JOURNAL OF CLINICAL AND BIOMEDICAL SCIENCES

Article

Journal of Clinical and Biomedical Sciences

Year: 2025, Volume: 15, Issue: 2, Pages: 126-132

Original Article

Antioxidant and Neuroprotective Activity of Wheat Microgreen Extracts against Rotenone Induced Neurotoxicity in Caenorhabditis elegans

Received Date:17 October 2024, Accepted Date:15 April 2025, Published Date:13 July 2025

Abstract

Background: Wheatgrass (Triticum, Family: Poaceae) juice is considered as a living food and often consumed due to its countless health benefits. Wheatgrass juice contains many bioactive compounds which can be useful for ameliorating neurogenerative diseases. Wheat in the form of microgreen (7th day after sowing) have been reported to have higher level of bioactive compounds compared to the mature wheatgrass or grain. Objective: To evaluate the protective effects of wheat microgreen extract against rotenone induced neurodegeneration in Caenorhabditis elegans. Methods: Worms were exposed to the different concentrations of rotenone to determine the concentration that can induce neurodegeneration without causing any mortality. Wheat microgreen extract was exposed to worms along with rotenone to determine the effective concentration. Neuroprotective potential of wheat microgreen extract was assessed by foraging and locomotory performance, free radical generation, cytotoxicity assay and dopamine content. Results: 4 µM concentration of rotenone was found non lethal but able to induce behavior changes after 48 h of exposure. Wheat microgreen extract at 1 mg/mL concentration was found minimum and effective when exposed along with rotenone to worms. Rotenone exposed C. elegans were observed to have reduced locomotory and foraging behaviors along with dopamine content, while an increased level of free radical and cytotoxicity. Wheat microgreen extract improved behavior performance and dopamine content, also reduce free radical generation and cytotoxicity in the rotenone exposed worms. Conclusion: Our study concludes that wheat microgreen exhibits neuroprotective and antioxidant potential and can be considered as a possible treatment for neurodegeneration.

Keywords: Wheat microgreen; Caenorhabditis elegans; Neurodegeneration; Rotenone

References

  1. Feigin VL, Vos T, Nichols E, Owolabi MO, Carroll WM, Dichgans M, et al. The global burden of neurological disorders: translating evidence into policy. The Lancet Neurology. 2020;19(3):255–265. Available from: https://dx.doi.org/10.1016/s1474-4422(19)30411-9
  2. Ding C, Wu Y, Chen X, Chen Y, Wu Z, Lin Z, et al. Global, regional, and national burden and attributable risk factors of neurological disorders: The Global Burden of Disease study 1990–2019. Frontiers in Public Health. 2022;10:1–14. Available from: https://dx.doi.org/10.3389/fpubh.2022.952161
  3. Zeng R, Zhou Q, Zhang W, Fu X, Wu Q, Lu Y, et al. Icariin-mediated activation of autophagy confers protective effect on rotenone induced neurotoxicity in vivo and in vitro. Toxicology Reports. 2019;6:637–644. Available from: https://dx.doi.org/10.1016/j.toxrep.2019.06.014
  4. Mendes D, Peixoto F, Oliveira MM, Andrade PB, Videira RA. Brain Effects of SC-Nanophytosomes on a Rotenone-Induced Rat Model of Parkinson’s Disease—A Proof of Concept for a Mitochondria-Targeted Therapy. International Journal of Molecular Sciences. 2022;23(20):1–21. Available from: https://dx.doi.org/10.3390/ijms232012699
  5. Wen S, Aki T, Unuma K, Uemura K. Chemically Induced Models of Parkinson’s Disease: History and Perspectives for the Involvement of Ferroptosis. Frontiers in Cellular Neuroscience. 2020;14:1–16. Available from: https://doi.org/10.3389/fncel.2020.581191
  6. Jayaraj R, Beiram R, Azimullah S, Nagoor MF, Ojha S, Adem A, et al. Noscapine Prevents Rotenone-Induced Neurotoxicity: Involvement of Oxidative Stress, Neuroinflammation and Autophagy Pathways. Molecules. 2021;26(15):1–17. Available from: https://dx.doi.org/10.3390/molecules26154627
  7. Bahrani E, Nunneley CE, Hsu S, Kass JS. Cutaneous Adverse Effects of Neurologic Medications. CNS Drugs. 2016;30(3):245–267. Available from: https://dx.doi.org/10.1007/s40263-016-0318-7
  8. Soria MJÁ, González AH, León SCGD, Francia MADR, Barragán JMF, Alcáñiz MJG, et al. Neurological syndromes associated with drug use. Frequency and characterisation. Neurología (English Edition). 2012;27(9):547–559. Available from: https://dx.doi.org/10.1016/j.nrleng.2011.09.006
  9. Ciriaco M, Ventrice P, Russo G, Scicchitano M, Mazzitello G, Scicchitano F, et al. Corticosteroid-related central nervous system side effects. Journal of Pharmacology and Pharmacotherapeutics. 2013;4(1_suppl):S94–S98. Available from: https://dx.doi.org/10.4103/0976-500x.120975
  10. Ayeni EA, Gong Y, Yuan H, Hu Y, Bai X, Liao X. Medicinal Plants for Anti-neurodegenerative diseases in West Africa. Journal of Ethnopharmacology. 2022;285:114468. Available from: https://dx.doi.org/10.1016/j.jep.2021.114468
  11. Pilipović K, Grubešić RJ, Dolenec P, Kučić N, Juretić L, Mršić-Pelčić J. Plant-Based Antioxidants for Prevention and Treatment of Neurodegenerative Diseases: Phytotherapeutic Potential of Laurus nobilis, Aronia melanocarpa, and Celastrol. Antioxidants. 2023;12(3):1–26. Available from: https://dx.doi.org/10.3390/antiox12030746
  12. Katiyar P, Rathore AS, Banerjee S, Nathani S, Zahra W, Singh SP, et al. Wheatgrass extract imparts neuroprotective actions against scopolamine-induced amnesia in mice. Food & Function. 2022;13(16):8474–8488. Available from: https://doi.org/10.1039/D2FO00423B
  13. Shrivastava AK, Magar PT, Shrestha L. Effect of aqueous extract of barley and wheat grass in stress induced depression in Swiss mice. Journal of Ayurveda and Integrative Medicine. 2022;13(3):1–9. Available from: https://dx.doi.org/10.1016/j.jaim.2022.100630
  14. Bar-Sela G, Cohen M, Ben-Arye E, Epelbaum R. The Medical Use of Wheatgrass: Review of the Gap Between Basic and Clinical Applications. Mini-Reviews in Medicinal Chemistry. 2015;15(12):1002–1010. Available from: https://dx.doi.org/10.2174/138955751512150731112836
  15. Khan MA, Yadav R, Singh VK, Singh VK, Mehrotra P, Singh B, et al. Phytochemical and Pharmacological Potential of Wheat Herb (Triticum aestivum): A Review. Acta Scientific Pharmaceutical Sciences. 2022;6(5):16–22. Available from: https://dx.doi.org/10.31080/asps.2022.06.0875
  16. Altuner F, Tuncturk R, Oral E, Tuncturk M. Evaluation of pigment, antioxidant capacity and bioactive compounds in microgreens of wheat landraces and cereals. Chilean journal of agricultural research. 2021;81(4):643–654. Available from: https://dx.doi.org/10.4067/s0718-58392021000400643
  17. Chalil M, Meitha K, Putra RE, Rahmah FA, Sinatra RR, Winanta AAP. Wheatgrass microgreen with high antioxidants content in an urban indoor farming system. 3BIO: Journal of Biological Science, Technology and Management. 2022;4(1):26–34. Available from: https://dx.doi.org/10.5614/3bio.2022.4.1.4
  18. Huang H, Jiang X, Xiao Z, Yu L, Pham Q, Sun J, et al. Red Cabbage Microgreens Lower Circulating Low-Density Lipoprotein (LDL), Liver Cholesterol, and Inflammatory Cytokines in Mice Fed a High-Fat Diet. Journal of Agricultural and Food Chemistry. 2016;64(48):9161–9171. Available from: https://dx.doi.org/10.1021/acs.jafc.6b03805
  19. Wadhawan S, Tripathi J, Gautam S. In vitro regulation of enzymatic release of glucose and its uptake by Fenugreek microgreen and Mint leaf extract. International Journal of Food Science & Technology. 2018;53(2):320–326. Available from: https://dx.doi.org/10.1111/ijfs.13588
  20. Renna M, Castellino M, Leoni B, Paradiso VM, Santamaria P. Microgreens Production with Low Potassium Content for Patients with Impaired Kidney Function. Nutrients. 2018;10(6):1–13. Available from: https://dx.doi.org/10.3390/nu10060675
  21. Salim MA, Subandi M, Yuniarti Y. Effect of Celery (Apium graveolens L.) Microgreens on Drosophila melanogaster. Baghdad Science Journal. 2023;p. 20–6. Available from: https://dx.doi.org/10.21123/bsj.2023.4903
  22. Caldwell KA, Willicott CW, Caldwell GA. Modeling neurodegeneration in <i>Caenorhabditis</i> <i>elegans</i>. Disease Models & Mechanisms. 2020;13(10):1–15. Available from: https://dx.doi.org/10.1242/dmm.046110
  23. Ha NM, Tran SH, Shim YH, Kang K. Caenorhabditis elegans as a powerful tool in natural product bioactivity research. Applied Biological Chemistry. 2022;65(1):1–18. Available from: https://dx.doi.org/10.1186/s13765-022-00685-y
  24. Brenner S. The Genetics of Caenorhabditis Elegans. Genetics. 1974;77(1):71–94. Available from: https://academic.oup.com/genetics/article/77/1/71/5991065
  25. Mishra MK, Mishra M, Kumari S, Shirke P, Srivastava A, Saxena S. Studies on anatomical behaviour of PaLCuV infected papaya (Carica papaya L.) Journal of Applied Horticulture. 2018;20(03):219–224. Available from: https://dx.doi.org/10.37855/jah.2018.v20i03.38
  26. Tsalik EL, Hobert O. Functional mapping of neurons that control locomotory behavior in Caenorhabditis elegans. Journal of Neurobiology. 2003;56(2):178–197. Available from: https://dx.doi.org/10.1002/neu.10245
  27. Ratnasekhar C, Sonane M, Satish A, Mudiam MKR. Metabolomics reveals the perturbations in the metabolome of Caenorhabditis elegans exposed to titanium dioxide nanoparticles. Nanotoxicology. 2015;9(8):994–1004. Available from: https://dx.doi.org/10.3109/17435390.2014.993345
  28. Sammi SR, Jameson LE, Conrow KD, Leung MCK, Cannon JR. Caenorhabditis elegans Neurotoxicity Testing: Novel Applications in the Adverse Outcome Pathway Framework. Frontiers in Toxicology. 2022;4:1–17. Available from: https://dx.doi.org/10.3389/ftox.2022.826488
  29. Zhou S, Wang Z, Klaunig JE. Caenorhabditis elegans neuron degeneration and mitochondrial suppression caused by selected environmental chemicals. International Journal of Biochemistry and Molecular Biology. 2013;4(4):191–200. Available from: https://pubmed.ncbi.nlm.nih.gov/24380023/
  30. Normando EM, Davis BM, Groef LD, Nizari S, Turner LA, Ravindran N, et al. The retina as an early biomarker of neurodegeneration in a rotenone-induced model of Parkinson’s disease: evidence for a neuroprotective effect of rosiglitazone in the eye and brain. Acta Neuropathologica Communications. 2016;4(1):1–15. Available from: https://dx.doi.org/10.1186/s40478-016-0346-z
  31. Rajput A, Sharma P, Kumar N, Kaur S, Arora S. Neuroprotective activity of novel phenanthrene derivative from Grewia tiliaefolia by in vitro and in silico studies. Scientific Reports. 2023;13(1):1–10. Available from: https://dx.doi.org/10.1038/s41598-023-29446-7
  32. Kenchappa PG, Karthik Y, Vijendra PD, Hallur RLS, Khandagale AS, Pandurangan AK, et al. In vitro evaluation of the neuroprotective potential of Olea dioica against Aβ peptide-induced toxicity in human neuroblastoma SH-SY5Y cells. Frontiers in Pharmacology. 2023;14:1–15. Available from: https://dx.doi.org/10.3389/fphar.2023.1139606
  33. Moreira J, Machado M, Dias-Teixeira M, Ferraz R, Delerue-Matos C, Grosso C. The neuroprotective effect of traditional Chinese medicinal plants—A critical review. Acta Pharmaceutica Sinica B. 2023;13(8):3208–3237. Available from: https://dx.doi.org/10.1016/j.apsb.2023.06.009

Copyright

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Sri Devaraj Urs Academy of Higher Education, Kolar, Karnataka

DON'T MISS OUT!

Subscribe now for latest articles and news.