JOURNAL OF CLINICAL AND BIOMEDICAL SCIENCES

Article

Journal of Clinical and Biomedical Sciences

Year: 2024, Volume: 14, Issue: 4, Pages: 129-137

Review Article

Review of 3D Printing Applications in Biomedical Engineering: A Comprehensive Analysis

Received Date:30 August 2024, Accepted Date:18 September 2024, Published Date:20 December 2024

Abstract

Three-dimensional printing (3DP), also known as additive manufacturing, has significantly impacted the biomedical field by enabling the creation of complex, patient-specific medical devices, implants, and tissues. The need for advanced medical solutions due to an aging population and increased reliance on electronic gadgets has driven research into 3DP application. This review focuses on the various biomedical applications of 3DP, including drug synthesis, medical device fabrication, bioprinting, and surgical planning. The review discusses key techniques such as bioprinting, which combines cells, growth factors, and biomaterials to create tissue-like structures, and the use of 3DP for patient-specific prostheses and orthoses. Additionally, the role of 3DP in tissue engineering, organ printing, and the development of bioactive and biodegradable scaffolds is explored. The findings highlight the versatility of 3DP in creating patient-specific medical devices, enhancing surgical outcomes, and advancing tissue engineering and regenerative medicine. Different 3DP techniques discussed also shows promise in producing robust and biocompatible implants, while challenges remain in the widespread application of bio printed organs and tissues. 3DP has the potential to revolutionize the biomedical field by providing customized, efficient, and effective solutions for various medical challenges.

Keywords: Three-dimensional printing, Bioprinting, Biomedical applications, Tissue engineering, Patient-specific implants, Regenerative medicine, Additive manufacturing

References

  1. Peña ADL, Peña-Brambila JDL, Torre JPDL, Ochoa M, Gallardo GJ. Low-cost customized cranioplasty using a 3D digital printing model: a case report. 3D Printing in Medicine. 2018;4(1):1–9. Available from: https://doi.org/10.1186/s41205-018-0026-7
  2. Xue S, Lv P, Wang Y, Zhao Y, Zhang T. Three dimensional bioprinting technology of human dental pulp cells mixtures. Beijing Da Xue Xue Bao Yi Xue Ban. 2013;45(1):105–108. Available from: https://pubmed.ncbi.nlm.nih.gov/23411530/
  3. Zhang B, Gao L, Ma L, Luo Y, Yang H, Cui Z. 3D Bioprinting: A Novel Avenue for Manufacturing Tissues and Organs. Engineering. 2019;5(4):777–794. Available from: https://doi.org/10.1016/j.eng.2019.03.009
  4. Conti M, Marconi S. Three-dimensional printing for biomedical applications. The International Journal of Artificial Organs. 2019;42(10):537–538. Available from: https://doi.org/10.1177/0391398819860846
  5. Aimar A, Palermo A, Innocenti B. The Role of 3D Printing in Medical Applications: A State of the Art. Journal of Healthcare Engineering. 2019;2019:1–10. Available from: https://doi.org/10.1155/2019/5340616
  6. Yan Q, Dong H, Su J, Han J, Song B, Wei Q, et al. A Review of 3D Printing Technology for Medical Applications. Engineering. 2018;4(5):729–742. Available from: https://doi.org/10.1016/j.eng.2018.07.021
  7. Sheth U, Theodoropoulos J, Abouali J. Use of 3-Dimensional Printing for Preoperative Planning in the Treatment of Recurrent Anterior Shoulder Instability. Arthroscopy Techniques. 2015;4(4):311–316. Available from: https://doi.org/10.1016/j.eats.2015.03.003
  8. Tamay DG, Usal TD, Alagoz AS, Yucel D, Hasirci N, Hasirci V. 3D and 4D Printing of Polymers for Tissue Engineering Applications. Frontiers in Bioengineering and Biotechnology. 2019;7:1–22. Available from: https://doi.org/10.3389/fbioe.2019.00164
  9. Yang F, Tadepalli V, Wiley BJ. 3D Printing of a Double Network Hydrogel with a Compression Strength and Elastic Modulus Greater than those of Cartilage. ACS Biomaterials Science & Engineering. 2017;3(5):863–869. Available from: https://doi.org/10.1021/acsbiomaterials.7b00094
  10. Tan Z, Parisi C, Silvio LD, Dini D, Forte AE. Cryogenic 3D Printing of Super Soft Hydrogels. Scientific Reports. 2017;7(1):1–11. Available from: https://doi.org/10.1038/s41598-017-16668-9
  11. Prasopthum A, Deng Z, Khan I, Yin Z, Guo B, Yang J. Three dimensional printed degradable and conductive polymer scaffolds promote chondrogenic differentiation of chondroprogenitor cells. Biomaterials Science. 2020;8(15):4287–4298. Available from: https://doi.org/10.1039/D0BM00621A
  12. Ganguli A, Pagan-Diaz GJ, Grant L, et al. 3D printing for preoperative planning and surgical training: a review. Biomedical Microdevices . 2018;20(3). Available from: https://doi.org/10.1007/s10544-018-0301-9
  13. Spottiswoode BS, Heever DJVD, Chang Y, et al. Preoperative three-dimensional model creation of magnetic resonance brain images as a tool to assist neurosurgical planning. Stereotactic and Functional Neurosurgery. 2013;91(3):162–169. Available from: https://doi.org/10.1159/000345264
  14. Segaran N, Saini G, Mayer JL, et al. Application of 3D Printing in Preoperative Planning. Journal of Clinical Medicine. 2021;10(5):1–13. Available from: https://doi.org/10.3390/jcm10050917
  15. Velásquez-García LF, Kornbluth Y. Biomedical Applications of Metal 3D Printing. Annual Review of Biomedical Engineering . 2021;23(1):307–338. Available from: https://doi.org/10.1146/annurev-bioeng-082020-032402
  16. Billiet T, Vandenhaute M, Schelfhout J, Vlierberghe SV, Dubruel P. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials. 2012;33(26):6020–6041. Available from: https://doi.org/10.1016/j.biomaterials.2012.04.050
  17. Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21(24):2529–2543. Available from: https://doi.org/10.1016/S0142-9612(00)00121-6
  18. Ng WL, Lee JM, Yeong WY, Naing MW. Microvalve-based bioprinting – process, bio-inks and applications. Biomaterials Science. 2017;5(4):632–647. Available from: https://doi.org/10.1039/C6BM00861E
  19. Stephens JS, Cooper JA, Phelan FR, Dunkers JP. Perfusion flow bioreactor for 3D in situ imaging: Investigating cell/biomaterials interactions. Biotechnology and Bioengineering. 2007;97(4):952–961. Available from: https://dx.doi.org/10.1002/bit.21252
  20. Bozkurt Y, Karayel E. 3D printing technology; methods, biomedical applications, future opportunities and trends. Journal of Materials Research and Technology. 2021;14:1430–1450. Available from: https://doi.org/10.1016/j.jmrt.2021.07.050
  21. Tytgat L, Damme LV, Hoorick JV, et al. Additive manufacturing of photo-crosslinked gelatin scaffolds for adipose tissue engineering. Acta Biomaterialia. 2019;94:340–350. Available from: https://doi.org/10.1016/j.actbio.2019.05.062
  22. Deo KA, Singh KA, Peak CW, Alge DL, Gaharwar AK. Bioprinting 101: Design, Fabrication, and Evaluation of Cell-Laden 3D Bioprinted Scaffolds. Tissue Engineering Part A. 2020;26(5-6):318–338. Available from: https://dx.doi.org/10.1089/ten.tea.2019.0298
  23. Jang J, Park HJ, Kim SW, Kim H, Park JY, Na SJ, et al. 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials. 2017;112:264–274. Available from: https://dx.doi.org/10.1016/j.biomaterials.2016.10.026
  24. Madrid APM, Vrech SM, Sanchez MA, Rodriguez AP. Advances in additive manufacturing for bone tissue engineering scaffolds. Materials Science and Engineering: C. 2019;100:631–644. Available from: https://dx.doi.org/10.1016/j.msec.2019.03.037
  25. Ozbolat IT, Peng W, Ozbolat V. Application areas of 3D bioprinting. Drug Discovery Today. 2016;21(8):1257–1271. Available from: https://dx.doi.org/10.1016/j.drudis.2016.04.006
  26. Parak A, Pradeep P, Toit LCd, Kumar P, Choonara YE, Pillay V. Functionalizing bioinks for 3D bioprinting applications. Drug Discovery Today. 2019;24(1):198–205. Available from: https://dx.doi.org/10.1016/j.drudis.2018.09.012
  27. Tasnim N, Vega LDl, Kumar SA, Abelseth L, Alonzo M, Amereh M, et al. 3D Bioprinting Stem Cell Derived Tissues. Cellular and Molecular Bioengineering. 2018;11(4):219–240. Available from: https://dx.doi.org/10.1007/s12195-018-0530-2
  28. Wu J, Xie L, Lin WZY, Chen Q. Biomimetic nanofibrous scaffolds for neural tissue engineering and drug development. Drug Discovery Today. 2017;22(9):1375–1384. Available from: https://dx.doi.org/10.1016/j.drudis.2017.03.007
  29. Malyala SK, Kumar YR, Rao CSP. Organ Printing With Life Cells: A Review. Materials Today: Proceedings. 2017;4(2, Part A):1074–1083. Available from: https://doi.org/10.1016/j.matpr.2017.01.122
  30. Sirota C. 3D Organ Printing. Science Journal of the Lander College of Arts and Sciences. 2016;10(1):66–72. Available from: https://touroscholar.touro.edu/sjlcas/vol10/iss1/12
  31. Mannoor MS, Jiang Z, James T, et al. 3D Printed Bionic Ears. Nano Letters. 2013;13(6):2634–2639. Available from: https://doi.org/10.1021/nl4007744
  32. Agarwal S, Saha S, Balla VK, Pal A, Barui A, Bodhak S. Current Developments in 3D Bioprinting for Tissue and Organ Regeneration-A Review. Frontiers in Mechanical Engineering. 2020;6:1–22. Available from: https://doi.org/10.3389/fmech.2020.589171
  33. Mironov V, Kasyanov V, Markwald RR. Organ printing: from bioprinter to organ biofabrication line. Current Opinion in Biotechnology. 2011;22(5):667–673. Available from: https://doi.org/10.1016/j.copbio.2011.02.006
  34. Fedorovich NE, Alblas J, Hennink WE, Oner FC, Dhert WJA. Organ printing: the future of bone regeneration? Trends Biotechnol. 2011;29(12):601–606. Available from: https://doi.org/10.1016/j.tibtech.2011.07.001
  35. Fan G, Meng Y, Zhu S, et al. Three-dimensional printing for laparoscopic partial nephrectomy in patients with renal tumors. Journal of International Medical Research. 2019;47(9):4324–4332. Available from: https://doi.org/10.1177/0300060519862058
  36. Mduzana L, Tiwari R, Lieketseng N, Chikte U. Exploring national human resource profile and trends of Prosthetists/Orthotists in South Africa from. Global Health Action . 2020;13(1):1–13. Available from: https://doi.org/10.1080/16549716.2020.1792192
  37. Chadwell A, Diment L, Micó-Amigo M, et al. Technology for monitoring everyday prosthesis use: a systematic review. Journal of NeuroEngineering and Rehabilitation. 2020;17(1):1–26. Available from: https://doi.org/10.1186/s12984-020-00711-4
  38. Honigmann P, Sharma N, Okolo B, Popp U, Msallem B, Thieringer FM. Patient-Specific Surgical Implants Made of 3D Printed PEEK: Material, Technology, and Scope of Surgical Application. Biomed Research International. 2018;2018:1–8. Available from: https://doi.org/10.1155/2018/4520636
  39. Birbara NS, Otton JM, Pather N. 3D modelling and printing technology to produce patient-specific 3D models. Heart Lung and Circulation. 2019;28(2):302–313. Available from: https://doi.org/10.1016/j.hlc.2017.10.017
  40. Weber DJ, Hao M, Urbin MA, Schoenewald C, Lan N. Chapter Twenty one - Sensory information feedback for neural prostheses. In: Biomedical Information Technology (Second Edition). (Vol. 2020, pp. 687-715) Academic Press. 2020.
  41. Hasibuzzaman M, Wahab AA, Seng GH, Ramlee MH. Three-dimensional printed orthosis in biomedical application: A short review. In: International Conference on Biomedical Engineering (ICoBE 2021) , Journal of Physics: Conference Series. (Vol. 2071, pp. 1-9) 2021.
  42. Quaresma C, Lopes B, Robalo JJ, Matos T, Quintão M, Orthorehab C. Development of a New Methodology for the Comparison Study Between Different Types of Ankle-Foot Orthoses in Foot Dysfunction. Frontiers in Digital Health. 2020;2:1–8. Available from: https://doi.org/10.3389/fdgth.2020.589521

Copyright

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Sri Devaraj Urs Academy of Higher Education, Kolar, Karnataka

DON'T MISS OUT!

Subscribe now for latest articles and news.