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Abstract
Background: The Electrocardiogram (ECG) is a vital clinical signal for recog-
nizing cardiovascular ailments (CVDs) such as Arrhythmia. However, manual
assessment of ECG signals is challenging due to subtle physiological variations
in both regular and irregular cases, mainly when dealing with a large volume
of cardiac patients. From this perspective, automated sorting of ECG signals
can offer substantial relief to healthcare experts, facilitating precise analysis.
Objective: This study aims to develop an automated system for sorting ECG
signals to ease the workload of healthcare experts and enhance the precision
of cardiac condition analysis. The ultimate goal is to provide healthcare profes-
sionals with a reliable tool that streamlines the interpretation process, enabling
timely and accurate diagnoses, thereby improving patient outcomes and reduc-
ing healthcare burdens. Method & Material: Current approaches predomi-
nantly rely on convolutional neural networks (CNNs) to extract ECG signal fea-
tures. However, these may fail to capture nuanced differences in pathologi-
cal features across different diseases. Transformer networks, known for their
prowess in handling sequence data, offer advantages in feature extraction but
often rely on extensive datasets, making the complete network intricate. This
proposed model utilizes CNN and Transformers for arrhythmia classification.
This study was conducted on the MIT-BIH Arrhythmia database (MIT-ArrhyDB),
classifying five distinct classes of arrhythmias based on theirmorphological fea-
tures. Result: The proposed model exhibits an impressive F1 Score of 98.52%
and classification accuracy of 98.95%. Conclusion: Comparative analysis with
standard CNN exposes the superior performance of our proposed model. This
highlights its outstanding overall performance and potential utility in clinical
applications.

Keywords: Electrocardiogram (ECG); Arrhythmia; Convolutional Neural Network (CNN);
Transformer
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1 Introduction
An irregular heartbeat, known as arrhythmia, occurs when
the heart’s rhythm is disrupted, causing it to beat erratically,
excessively quickly, or unusually slowly, distracting its abil-
ity to pump blood efficiently. It can be analysed with an
Electrocardiogram (ECG), which records the heart’s electri-
cal activity without invasive procedures. Traditionally, diag-
nosing arrhythmia relied on human observation, which was
time-consuming. However, automatic detection and classifi-
cation now save time and improve accuracy. Over the past
few decades, cardiovascular disease diagnosis has increas-
ingly relied onmachine learning (ML) anddeep learning (DL)
techniques. Outmoded ML requires extensive feature extrac-
tion from ECG signals, while DL models simplify this pro-
cess by automatically identifying relevant features for predic-
tion and classification1. YanfangDong et al.2 proposed CNN-
DVIT, the new architecture for deep learning classification of
multi-label arrhythmias using 12-lead ECG signals contain-
ing different-length recordings. This model combines CNNs
with depth wise separable convolutions and incorporates a
ViT with a deformable attention mechanism to extract spa-
tial and temporal characteristics from ECG data efficiently.
Sattar et al.3 developed a deep learning-based approach for
ECG classification by digitising ECG images to time-series
data and applying models such as CNN, LSTM, and SSL-
based autoencoders. The CNN model achieves the highest
accuracy for classifying cardiac arrhythmias. The results have
proven that the digitised ECG signals allow such accurate
real-time monitoring for cardiologists, offering an essential
instrument for the early and efficient diagnosis of cardiac dis-
eases. Answer: Ansari et al.4 review deep learning (DL) archi-
tectures for ECG arrhythmia detection, comparing models
like CNNs, MLPs, Transformers, and RNNs used from 2017
to 2023. It offers a roadmap for researchers entering the field,
providing insights into current trends and practical models
for detecting ECG anomalies.The survey also highlights areas
for future research, aiming to inspire further advancements in
ECG arrhythmia detection and classification.

ECG is the most widely employed and pertinent method
for evaluating a patient’s cardiac activity. Each cardiac phase
embraces successive atrial and ventricular depolarisation5,
emanating from the atrial sinoatrial node and spreading
across the heart. This process produces electrical currents on
the body’s surface, inducing skin surface electrical potential
variations. Surface electrodes capture these signals, which are
visually depicted in the ECG. A standard ECG cycle’s key
attributes include amplitudes,morphologies, and durations of
waves such as P, QRS, and T waves3, as illustrated in Figure 1.
A simple ECG wave starts with a P wave. The QRS wave,
notably, is the most significant waveform in the ECG signal
and represents the depolarisation of the ventricles. T waves
represent ventricular repolarisation.

Baseline wander, Power Line Interference, contact noise,
and motion artefacts represent diverse categories of noise
found in ECG signals6. M Wu et al.7,8 proposed a resilient
and effective deep 1D CNN with 12 layers to categorise five
arrhythmia classes. X Hua et al.9 presented a comprehensive
ECG signal classification technique that leverages a unique
1D CNN segmentation strategy. MMR Khan et al.10 pre-
sented a 1-D CNN based on DL for the automated cate-
gorisation of ECG heartbeats, aiming to classify five dis-
tinct types of abnormal rhythms. BM Maweu et al.11 pre-
sented the CNN Explanations Proposed model for ECG Sig-
nals (CEFEs), designed to provide interpretable explanations.
Y Zhao et al.12 introduced an automated technique for ECG
signal classification exploiting a deepCNN, complemented by
wavelet transform for data filtering. Savalia S and Emamian
V13 introduced a computerised classification system employ-
ing theMulti-Layer Perceptron (MLP) network and the CNN.

Fig 1. Typical diagram of ECGWaveform

Despite their effectiveness, DL-based methods face spe-
cific challenges14. They often require intricate convolution
and recursive structures, producing a series of concealed
states with limited parallelisation due to dependencies on pre-
vious states. While CNNs have become famous for pattern
classification, they may not capture pathological variations in
ECG signals, such as irregularities in shape, duration, or tim-
ing15. Transformer networks present a promising alternative,
offering advantages in handling sequential data and extract-
ing relevant features to classify cardiac abnormalities better.

Key contributions of the paper include:
(a) In pre-processing, denoising, signal segmentation, and

data resampling are meticulously executed.
(b) The proposed model employs transformer network

(TransNet) based CNN for feature mining.
(c) A comparative study is performed against the standard

CNN architecture to evaluate the model’s effectiveness.
ECG monitoring generates a continuous flow of data,

yielding large amounts of complicated waveforms that can-
not be analysed manually, especially in real-time. The vol-
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ume becomes even larger in large-scale clinical environ-
ments where numerous patients are monitored simultane-
ously. Arrhythmia can take such diverse forms and severi-
ties. Some are subtle and not easily detectable and require
specialists’ expert analyses for pattern recognition. Manual
interpretation is prone to error, particularly regarding infre-
quent or unusual arrhythmias. This analysis takes more time
and requires great attention to detail, which would be imprac-
tical for a clinical setting that needs prompt diagnoses to
intervene effectively. It is hard to find many professionals in
clinical settings whose qualifications warrant extensive train-
ing and experience for proper ECG interpretation. In high-
volume settings, the absence of available expertsmight reduce
the capability to keep pace with demand. Automated tech-
niques, like Transformer-based Convolutional Neural Net-
works, help address these challenges through efficient, scal-
able, and accurate tools for classifying arrhythmias. Specif-
ically, Transformer-based CNNs apply deep learning tech-
niques to capture temporal and spatial features in ECG data,
allowing for improved accuracy and speed up, which is criti-
cal in vast, real-time applications.

The proposed methodology integrates TransNet with the
CNN network to address its limitations, particularly its
suboptimal performance in handling temporal features. The
paper’s structure is outlined as follows: The proposed model
is detailed in Section 2; preliminary findings are presented in
Section 3; and a concise overview and concluding remarks are
provided in Section 4.

2 Materials and Methodology
The proposed model is represented in Figure 2. In Figure 2
ECG signals from MIT-ArrhyDB are given as input to the
model. Due to undesired random instabilities, the signal is
exposed to eradicate noise as part of the pre-processing.
After the signal has been de-noised, R-peak information is
accessible from the database, which separates the individual
heartbeats. Next, resampling has been used to enrich the data,
and lastly, the classifier architecture receives the processed
and expanded data. The following subsections include a full
description of the complete procedure.

Fig 2. Architecture of proposed TransNet-based CNNModel

In Figure 2, the raw data is pre-processed to eliminate
unwanted noise or artefacts of the ECG signal, improving the
signal quality. Then, we extract all the relevant segments that
might correspond to individual heartbeats or specific inter-
vals, after which we bring the data into a uniform sampling
rate for consistency, which is valuable for further process-
ing. Filter count and kernel dimension with values of 32, 64,
and 128 and dimensions of 1.5, 1.7, and 1.9, respectively, are
used within each layer for identifying the different patterns
appearing in ECG signals. After extracting the features by
CNN, these are fed into a Transformer Network, which, using
attentionmechanisms, helps to understand complex relation-
ships between data points. This approach also accounts for
sequential relationships among heartbeats in ECGs, making
it suitable for analysing ECG data, which is inherently time-
dependent. This output from the Transformer Network is
given a softmax function to provide different classes’ prob-
abilities. The pipeline implements CNN for feature extrac-
tion and Transformer networks for sequential learning of
ECG data to classify it into different heartbeat categories. The
approach efficiently suits the appropriately complex tempo-
ral patterns of ECG signals and will potentially contribute to
automated arrhythmia detection systems.

2.1 Dataset

The data hired in this research were traced from the
MIT-ArrhyDB16,17. By leveraging the R-peak data from
MIT-ArrhyDB, we fragmented the signal into individual
beats grounded around each R-peak and documented their
respective types. Each beat fragment contained 300 data
points, with 150 preceding the R-peak and 149 following
the peak. Adhering to AAMI recommendations, we elicited
109,446 fragments categorised into five categories: 90,592
Non-ectopic beats (N), 2,781 Supraventricular ectopic beats
(S), 7,232 Ventricular ectopic beats (V), 802 Fusion beats (F),
and 8,039 Unknown beats (Q). The dataset is divided into
80:20 ratios for training and evaluate the proposed model.

2.2 Pre-Processing of ECG Input Signal

Denoising, signal segmentation and resampling are done as
part of pre-processing. The prime noise in most electrophys-
iological signals is power line interference (PLI)18. The diffi-
culties of transient interferences associated with digital notch
filters are addressed by the proposal of an adaptive notch filter
(ANF)19. In this method, apply fast Fourier transform (FFT)
on the input data, 𝑒(𝑡)with the sampling frequency of 𝑓𝑠 and
length N. Utilizing a pair of spectral bins positioned in the
primary lobe of the Fourier spectrum permits the assessment
of PLI parameters, including amplitude 𝐴𝑃𝐿𝐼, frequency
𝑓𝑃𝐿𝐼, and initial phase ∅𝑃𝐿𝐼 with the help of ratio based
spectrum correction methods (RBSC). This estimation facil-
itates the creation of a compensation signal, 𝐶𝑃𝐿𝐼 (𝑡). The
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subsequent subtraction of this recompense signal from the
original signal effectively suppresses the occurrence of PLI.
The mathematical representation of the above steps is shown
in Equations (1), (2), (3) and (4), respectively, et represents
the ECG signal, ef represents the ECG signal after the appli-
cation of FFT, and CPLIt is the compensation signal.

𝑒(𝑡) 𝐹𝐹𝑇−−→ ̂𝑒(𝑓) (1)

̂𝑒 (𝑓) 𝑅𝐵𝑆𝐶−−−→ 𝐴𝑃𝐿𝐼,𝑓𝑃𝐿𝐼, ∅𝑃𝐿𝐼 (2)

𝐶𝑃𝐿𝐼 (𝑡) = 𝐴𝑃𝐿𝐼. 𝑐𝑜𝑠(2𝜋𝑓𝑃𝐿𝐼𝑡+ ∅𝑃𝐿𝐼) (3)

−𝑒 (𝑡) = 𝑒(𝑡)− 𝐶𝑃𝐿𝐼 (𝑡) (4)

The signal is further treated by segmenting it into individual
heartbeats following the denoising step. A significant imbal-
ance in the dataset prompted the implementation of resam-
pling techniques to achieve data balance.

2.3 Proposed model

The proposed architecture embraces three primary segments:
(a) an embedded network based on one-dimensional convo-
lution layers for extracting unprocessed data from divided
ECG waves, (b) a transformer network, and (c) a classifica-
tion segment.

(a) CNN segment
CNN operates feed-forwardly and is extensively employed
for extracting features20. The CNN segment consists of
four convolutional layers with the following parameters:
Layer 1 has 32 filters and features a kernel size (k𝑠) of
15. Layer 2 has the same parameter as Layer 1. Layer 3 is
composed of 64 filters and utilises a k𝑠 of 17, while Layer
4 comprises 128 filters with a k𝑠 of 19. The heartbeats
undergo processing using four 1D convolutional layers.
Following representation learning, the characteristic vector
𝑥𝑓′ = 𝑥𝑓1,𝑥𝑓2,……..,𝑥𝑓𝑛 is generated, and this vector
serves as the input to a TransNet. Padding and stride are kept
identical in all layers. To give the network non-linearity and
to address the vanishing gradient problem, the non-linear
function is configured to a rectified linear unit (ReLU).

(b) Transformer segment
To address the limitation of CNNs in modelling long-range
correlations in time series data, a TransNet is integrated
into the proposed model to extract extended patterns from
the features identified by the CNN. The TransNet21 was

devised based on the attention mechanism, comprising both
an encoder and a decoder. In the proposed model the
transformer encoder has been used to record interactions
and long-range dependencies across time instances. The sole
portion employed in the input signal categorisation problem
is the encoder section, whose structure is depicted in Figure 3.
Before applying the attention module, the output of the
convolution segment, xf′, is subjected to positional encoding.
As shown in Figure 3, the encoder function is explained as
follows.

Self-Attention Module: The Inputs Q, K, and V corre-
spond to the query, key, and value, respectively. The atten-
tion score is computed based on the resemblance between
the Q and K. Subsequently, the attention context is estab-
lished according to this attention score. The calculation for
the scaled dot-product attention employed by the model can
be expressed using Equation (5) where 1

√𝑑𝑘
is the scaling fac-

tor.

𝐴𝑡𝑡𝑒𝑛(𝑄,𝐾,𝑉 ) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑄𝐾𝑇

√𝑑𝑘
) (5)

Multi-head attention: The multi-head attention mechanism
splits different attention products after projecting Q, K, and
V through ‘n’ distinct linear transformations. The values of
Q, K, and V are identical in the self-attention process. The
formulas are represented in Equations (6) and (7).Themodel’s
input size is 256, and it is executed through four transformer
encoder blocks.

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄,𝐾,𝑉 ) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1,ℎ𝑒𝑎𝑑2,…..,ℎ𝑒𝑎𝑑𝑛) (6)

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛(𝑄𝑊 𝑄
𝑖 ,𝐾𝑊 𝐾

𝑖 ,𝑉 𝑊 𝑉
𝑖 (7)

Position-wise feed-forward networks: - Every layer of the
encoder has a fully linked feed-forward network, a two-
level layer linear mapping, and an attention sub-layer. Linear
transformations in the network using weight matrices W1,
W2, and biases b1, b2, followed by layer normalisation, are
represented as 𝐹𝐹𝑁(𝑥) and calculated using Equation (8).
The resulting output of the transformer network, denoted
as 𝑜𝑡𝑓 ∶ {𝑜1, 𝑜2, ………….,𝑜𝑛} represents a learned vector for
each feature.

𝐹𝐹𝑁 (𝑥) = 𝑚𝑎𝑥(0, 𝑥𝑊1 + 𝑏1) 𝑊2+𝑏2 (8)

Positional encoding: The sequence’s absolute or relative
position is appended to the input at the encoder’s top to utilise
the sequence’s order.

Certain conditions in medical datasets, such as certain
arrhythmias, are much less frequent than others. Trans-
formers struggle with imbalanced datasets since they can
become biased towards more frequently occurring patterns
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and, therefore, do not perform optimally in rare but critical
conditions. Transformers have high computational andmem-
ory demands, especially because the self-attention mecha-
nism scales quadratically with the input sequence length.
Long sequences are typical in medical data: continuous ECG
signals and extended MRI scans consume a lot of resources,
making training and inference slow and resource-hungry. Big
transformers need a great deal of labelled data to generalise
well. In medical domains, however, labelled data is usually
limited due to privacy concerns, costs of annotations and the
requirement of expert interpretation. In such cases, it can be
challenging to attain optimal model performance. Sometimes
Transformers have poor performance in local feature extrac-
tion.Thismay require supplementary convolutional layers, or
hybrid approaches to improve sensitivities to local features.
These will add to the complexity of the model.

(c) Classification segment
The output of TransNet 𝑜𝑡𝑓 is attached to the fully connected
layer designed for multiclass categorisation. This tier cate-
gorises five different classes of arrhythmias.

Fig 3. Encoder architecture of TransNet Model

In Figure 3, the architecture of a Transformer Encoder
Layer is quite typical in deep learning models to treat sequen-
tial data, such as text or time-series data, such as an ECG sig-
nal. Raw Input Data: This could be an ECG signal segment,
text, or sequential data. Input Embedding:This block converts
the input into a dense vector representation with which the
model can work. This embedding captures the inductive fea-
tures of the input data. Since Transformer models are inher-
ently position agnostic, a positional embedding is added to
the input embedding. This helps it learn the order of the data
point, which is very important for sequences like the sig-
nal from an ECG. This layer lets the model focus on differ-

ent parts of the input sequence simultaneously by comput-
ing attention scores for multiple ”heads.” Each head learns a
different aspect of the relationships in the data, allowing the
model to capture complex dependencies across time steps in
the ECG signal.The Add&Norm layer normalises the output
of the attention layer. Then it adds it to the input embedding
along with a residual connection, which supports the flow of
information through the network and stabilises training.This
layer applies to each position separately with a fully connected
feed-forward network that further transforms the representa-
tion and supports the model in catching more complex pat-
terns. Here, another Add & Norm process is introduced so
that the standardisation of feed-forward output is combined
with the previous output for bettermemorisation and a stabil-
isation model. By this Transformer Encoder Layer, the model
becomes helpful in understanding complex dependencies and
contextual information that remains in such sequential data.
The multi-head attention combined with feed-forward lay-
ers makes this architecture particularly well suited to learn-
ing both short-term and long-term dependencies; this gives
its strength to applications such as electrocardiogram signal
classification and natural language processing.

3 Experimental Results
This architecture uses 109,446 ECG signal segments from the
MIT-ArrhyDB to evaluate model performance.The dataset is
divided 80:20 for learning and evaluation, with 87,554 beats
for training and 21,892 for assessment. The model classifies
five categories of CVDs—N, S, V, F, andQ achieving an overall
accuracy of 98.95% and an F1-score of 98.52%. The training
was conducted for 50 epochs. A gradual increase in training
accuracy was observed up to the 40th epoch, after which
it reached a saturation point, maintaining stability from the
40th to the 50th epoch. Therefore, training was halted at 50
epochs. The Adam optimiser with a learning rate 0.001 was
utilised to avoid overfitting. Despite some misclassifications
in the normal class, these are minor relative to the total
number of beats tested. Although S and F beats are less
frequent, the model achieves 83% and 86% accuracy for these
classes, respectively. In contrast, a reference model [20] using
a transformer for ECG classification reported an accuracy of
90.52%. The commonly employed metrics, namely Accuracy,
Precision, Recall, and F1-score (represented in Equations (9),
(10), (11) and (12), respectively), have been utilised to
evaluate the proposed classification model quantitatively.
True positives and true negatives are denoted as TP and TN,
while false positives and false negatives are represented as FP
and FN.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇 𝑃 +𝑇 𝑁
𝑇 𝑃 +𝑇 𝑁 +𝐹𝑃 +𝐹𝑁 (9)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇 𝑃
𝑇 𝑃 +𝐹𝑃 (10)
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𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇 𝑃
𝑇 𝑃 +𝐹𝑁 (11)

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2. 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙 (12)

Each category is evaluated based on accuracy, precision,
recall, and F1-score.Themodel achieves high accuracy across
all categories, with N and Q at 99.00%, V at 95.00%, S
at 83.00%, and F at 86.00%. Precision and recall values
closely match accuracy, indicating consistent performance
in correctly identifying each category. F1-scores, which
balance precision and recall, range from 83.00% to 99.00%,
highlighting the model’s effectiveness in classifying ECG
signals across diverse cardiac conditions.

To analyse the performance of the proposed model, it
is also trained using a convolutional neural network, which
gives an overall accuracy of 96.82%. When the transformer
block is incorporated with CNN, the overall accuracy is
enhanced to 98.95%. Table 1 shows the comparison of the
transformer-based CNN model with previous architectures.
Figures 4 and 5 represent training and validation accuracy
and training and validation loss, respectively. Figures 6 and 7
illustrate the confusion matrices for the model employing
CNN-Transformer and CNN, respectively.The application of
CNN alone results in an F1-score of 96.31% in the proposed
model. Incorporating the transformer into the CNN leads to a
notable improvement, with the F1-score improving by 2.21%.

Figure 4 compares the training and validation accu-
racy of two models over 50 epochs. Figure 4(a) shows the
performance of a CNN, where training accuracy stabilises
close to 1.0, but validation accuracy fluctuates and stabilises
around 0.975, showing potential overfitting. Figure 4 (b)
depicts the performance of a combined CNN and Trans-
former model, with both training and validation accuracies
increasing rapidly and stabilising close to 1.0, representing
better generalisation and reliable performance.The enclosure
of transformers augments the model’s capability to capture
complex patterns, leading to superior overall performance
compared to CNN alone. Figure 5 (a) shows that the train-
ing loss decreases rapidly and stabilises near zero, while the
validation loss also decreases but remains higher and fluctu-
atesmore, suggesting potential overfitting. Figure 5 (a) shows
that the training and validation losses decrease rapidly and
closely follow each other, stabilising near zero, indicating that
the TransNet-based CNN model achieves better generalisa-
tion and more stable performance on both training and vali-
dation data.

As shown in Figures 6 and 7, the CNN with TransNet
performs better than the basic CNN. The proposed model
demonstrates an accuracy of 86% for class S and 83% for class
F, despite these classes having a smaller quantity of data.

Fig 4. (a) Training and validation accuracy of CNN (b) Training
and validation accuracy of TransNet-based CNN

Fig 5. (a) Training and validation loss of CNN (b) Training and
validation loss of TransNet-based CNN

Fig 6. Confusionmatrix of TransNet-based CNN (in probability)

Table 1 showcases the superior performance of the pro-
posed TransNet-based CNN model, which achieves an
impressive accuracy of 98.95% and an F1 score of 98.52%.
The table demonstrates that the proposed architecture sig-
nificantly outperforms other compared models, particularly
excelling in accurately classifying low-quantity signals such
as Supraventricular and Fusion beats.

Implementing an automated Transformer-based CNN
system for classifying arrhythmia in a real-world clinical
environment presents several potential challenges. Hospitals
and clinics use many legacy systems that cannot support
advanced deep-learning models; thus, much modification
and integration may be necessary for seamless data transfer
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Fig 7. Confusion matrix of CNN (in probability)

Table 1. Performance comparisons of TransNet-based CNN
with other models

Model Year of
publi-
cation

Accuracy Precision Recall F1-
score

Transformer22 2022 90.52% 88.50% 86.46% 87.47%
CNN-
LSTM23

2021 95.81% 74.94% 69.20% 71.06%

CNN20 2021 94.70% 93.70% 89.00% 88.90%
Ensemble
Multilabel
Classifica-
tion24

2020 75.20% 80.80% 71.60% 75.20%

1D CNN9 2020 97.45% — 97.00% 97.00%
CNN-
BiLSTM25

2020 96.77% 81.24% 74.89% 77.84%

CNN26 2019 93.71% 88.30% 91.25% 89.75%
1D CNN27 2018 95.20% 92.52% 93.52% 92.45%
Proposed-
CNN

—- 96.82% 96.03% 96.26% 96.31%

Proposed-
TransNet
based CNN

—- 98.95% 98.35% 98.24% 98.52%

and processing. Integrations with electronic health records
and other medical databases are technically complicated
and resource-demanding processes. Healthcare data is most
sensitive, and implementing automated systems requires
strict adherence to privacy regulations in the healthcare
sector, such as HIPAA in the U.S. or GDPR in Europe. Secure
data handling, encryption, and anonymisation protocols
will protect privacy but add some layers of complexity to

the deployment of such a system. Clinical environments
would particularly demand near real-time if not real-time,
processing of ECG data for expedited patient diagnosis
and treatment. Transformer-based models are powerful but
could also be computationally expensive, posing significant
challenges in achieving adequate speed and efficiency without
high-performance hardware. ECG data differ considerably
from patient to patient due to age, physical condition, and
sensor quality. Noises and artefacts from patient movement,
electrode placement, or other environmental reasons can
affect signal quality and make accurate classification difficult.
The system built should ensure robustness against such
variability to limit misdiagnosis. Advanced deep learning
models integrated and maintained within healthcare require
special hardware, maintenance, and technical support for
proper functionality. These costs can be highly prohibitive
for smaller clinics or facilities with limited budgets, slowing
adoption across diverse clinical environments.

4 Conclusion
This research proposed an automated categorisation model
that combines aCNNandTransNet to categorise ECG signals.
Before being fed into theCNN, theECGsignal undergoes pre-
processing procedures, including denoising, segmentation,
and resampling. The parameter information extracted by
the CNN retains temporal characteristics. Through the
synergistic combination of the CNN and an enhanced
transformer, the proposed model achieves a categorisation
accuracy of 98.95%. The suggested model may be used
because of its performance and the fact that transformerswere
included to address the complexity issues with sequential
models. This model can be used with wearable technologies
in future research to help save more lives in emergencies
by providing ongoing monitoring. Future scopes in this
direction are promisingly developing Transformer-based
CNNs for arrhythmia classification in clinical settings, which
extend to all constituencies of healthcare domains. Further
work could incorporate these models with wearable devices
for healthmonitoring, such as smartwatches andmobile ECG
monitors. This would enable seamless, in situ, immediate
arrhythmia detection outside clinics, allowing for remote
monitoring and early interventions, especially among high-
risk or elderly patients. Automated systems can permit
clinicians to monitor and manage patients with arrhythmias
who reside in areas inaccessible by specialists. To combine it
with telemedicine, future systems can be designed to integrate
with existing platforms for reviewing and diagnosing patients
by remote specialists, which is highly valuable in managing
chronic cardiac conditions.
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