JOURNAL OF CLINICAL AND BIOMEDICAL SCIENCES

Article

Journal of Clinical and Biomedical Sciences

Year: 2024, Volume: 14, Issue: 3, Pages: 75-84

Review Article

Applications of Hydroxyapatite in Healthcare Sectors – A Perspective Review

Received Date:27 August 2024, Accepted Date:18 September 2024, Published Date:25 September 2024

Abstract

Nano-hydroxyapatite (nHAp) provides a promising prospect in the field of healthcare owing to its biocompatibility and resemblance to the mineral composition of genuine bone. Nevertheless, there are still obstacles to overcome in order to convert its potential into practical applications. An important challenge is to develop scalable and reproducible synthesis methods that guarantee constant quality of nano-hydroxyapatite (nHAp). Ensuring precise control over particle size, shape, and purity is of utmost importance, as these parameters have a direct influence on the biocompatibility and effectiveness. Furthermore, it is necessary to conduct further research on the long-term stability and degradation rates in living organisms in order to ensure proper absorption of materials and minimize the risk of toxicity. Notwithstanding these difficulties, nHAp exhibits great potential. The capacity to function as a precise drug delivery system, namely for the treatment of bone disorders and cancer, is a highly intriguing field of study. Moreover, scaffolds built on nHAp exhibit promise in the field of bone tissue engineering and regenerative medicine. By integrating antibacterial compounds or altering the surface features of nHAp, there are possibilities for addressing infections and inflammation. Maximizing the complete capabilities of nHAp requires continuous research, namely in the areas of scalable synthesis, toxicity assessment, and clinical application. Successfully overcoming these obstacles will clear the path for nHAp to completely transform the healthcare industry and contribute to a new age of patient care. Keywords Hydroxyapatite, Healthcare, Bone, Dentistry

References

  1. Pushpalatha C, Gayathri VS, Sowmya SV, Augustine D, Alamoudi A, Zidane B, et al. Nanohydroxyapatite in dentistry: A comprehensive review. The Saudi Dental Journal. 2023;35(6):741–752. Available from: https://doi.org/10.1016/j.sdentj.2023.05.018
  2. Sobczak-Kupiec A, Drabczyk A, Florkiewicz W, Głąb M, Kudłacik-Kramarczyk S, Słota D, et al. Review of the Applications of Biomedical Compositions Containing Hydroxyapatite and Collagen Modified by Bioactive Components. Materials. 2021;14(9):1–51. Available from: https://doi.org/10.3390/ma14092096
  3. Okada M, Furuzono T. Hydroxylapatite nanoparticles: fabrication methods and medical applications. Science and Technology of Advanced Materials. 2012;13(6):1–14. Available from: https://doi.org/10.1088%2F1468-6996%2F13%2F6%2F064103
  4. Haider A, Haider S, Han SS, Kang IK. Recent advances in the synthesis, functionalization and biomedical applications of hydroxyapatite: a review. RSC Advances. 2017;7(13):7442–7458. Available from: https://doi.org/10.1039/C6RA26124H
  5. Mazumder S, Nayak AK, Ara TJ, Hasnain MS. Hydroxyapatite composites for dentistry. In: Applications of Nanocomposite Materials in Dentistry, Woodhead Publishing Series in Biomaterials. (pp. 123-143) Elsevier eBooks. 2019.
  6. Lei Y, Song B, Weijden RDVD, Saakes M, Buisman CJN. Electrochemical Induced Calcium Phosphate Precipitation: Importance of Local pH. Environmental Science & Technology. 2017;51(19):11156–11164. Available from: http://dx.doi.org/10.1021/acs.est.7b03909
  7. Diebolder P, Vazquez-Pufleau M, Bandara N, Mpoy C, Raliya R, Thimsen E, et al. Aerosol-synthesized siliceous nanoparticles: impact of morphology and functionalization on biodistribution. International Journal of Nanomedicine. 2018;13:7375–7393. Available from: https://doi.org/10.2147/IJN.S177350
  8. Niu JL. Hydrothermal Synthesis of Nano-Crystalline Hydroxyapatite. Key Engineering Materials. 2007;330-332:247–250. Available from: https://doi.org/10.4028/www.scientific.net/KEM.330-332.247
  9. Roveri N, Iafisco M. Evolving application of biomimetic nanostructured hydroxyapatite. Nanotechnology Science and Applications. 2010;3:107–125. Available from: https://doi.org/10.2147%2FNSA.S9038
  10. Catros S, Guillemot F, Lebraud E, Chanseau C, Perez S, Bareille R, et al. Physico-chemical and biological properties of a nano-hydroxyapatite powder synthesized at room temperature. IRBM. 2010;31(4):226–233. Available from: https://doi.org/10.1016/j.irbm.2010.04.002
  11. Karthikeyan BS, Mahalaxmi S. Biomimetic dentin remineralization using eggshell derived nanohydroxyapatite with and without carboxymethyl chitosan - An in vitro study. International Journal of Biological Macromolecules. 2024;270(Part 1). Available from: https://doi.org/10.1016/j.ijbiomac.2024.132359
  12. Skwarek E, Goncharuk O, Sternik D, Janusz W, Gdula K, Gun’ko VM. Synthesis, Structural, and Adsorption Properties and Thermal Stability of Nanohydroxyapatite/Polysaccharide Composites. Nanoscale Research Letters. 2017;12(1):1–12. Available from: https://doi.org/10.1186/s11671-017-1911-5
  13. Erdem U, Dogan M, Metin AU, Baglar S, Turkoz MB, Turk M, et al. Hydroxyapatite-based nanoparticles as a coating material for the dentine surface: An antibacterial and toxicological effect. Ceramics International. 2020;46(1):270–280. Available from: https://doi.org/10.1016/j.ceramint.2019.08.260
  14. Wang P, Li C, Gong H, Jiang X, Wang H, Li K. Effects of synthesis conditions on the morphology of hydroxyapatite nanoparticles produced by wet chemical process. Powder Technology. 2010;203(2):315–321. Available from: https://doi.org/10.1016/j.powtec.2010.05.023
  15. Tai CY, Chen CK. Particle morphology, habit, and size control of CaCO3 using reverse microemulsion technique. Chemical Engineering Science. 2008;63(14):3632–3642. Available from: https://doi.org/10.1016/j.ces.2008.04.022
  16. Liu DM, Troczynski T, Tseng WJ. Water-based sol-gel synthesis of hydroxyapatite: process development. Biomaterials. 2001;22(13):1721–1730. Available from: https://doi.org/10.1016/S0142-9612(00)00332-X
  17. Abere DV, Ojo SA, Oyatogun GM, Paredes-Epinosa MB, Niluxsshun MCD, Hakami A. Mechanical and morphological characterization of nano-hydroxyapatite (nHA) for bone regeneration: A mini review. Biomedical Engineering Advances. 2022;4:1–12. Available from: https://doi.org/10.1016/j.bea.2022.100056
  18. Noor Z. Nanohydroxyapatite Application to Osteoporosis Management. Journal of Osteoporosis. 2013;2013:1–6. Available from: https://doi.org/10.1155/2013/679025
  19. Fu Y, Cui S, Luo D, Liu Y. Novel Inorganic Nanomaterial-Based Therapy for Bone Tissue Regeneration. Nanomaterials. 2021;11(3):1–18. Available from: https://doi.org/10.3390/nano11030789
  20. Munir MU, Salman S, Ihsan A, Elsaman T. Synthesis, Characterization, Functionalization and Bio-Applications of Hydroxyapatite Nanomaterials: An Overview. International Journal of Nanomedicine. 2022;17:1903–1925. Available from: https://dx.doi.org/10.2147/ijn.s360670
  21. Tsai SW, Huang SS, Yu WX, Hsu YW, Hsu FY. Fabrication and Characteristics of Porous Hydroxyapatite-CaO Composite Nanofibers for Biomedical Applications. Nanomaterials. 2018;8(8):1–9. Available from: https://dx.doi.org/10.3390/nano8080570
  22. Dan Y, Liu O, Liu Y, Zhang YY, Li S, Feng Xb, et al. Development of Novel Biocomposite Scaffold of Chitosan-Gelatin/Nanohydroxyapatite for Potential Bone Tissue Engineering Applications. Nanoscale Research Letters. 2016;11(1):1–6. Available from: https://dx.doi.org/10.1186/s11671-016-1669-1
  23. Xiong Y, Ren C, Xiong Y, Xiong Y, Lang Y, Min L, et al. Analyzing the behavior of a porous nano-hydroxyapatite/polyamide 66 (n-HA/PA66) composite for healing of bone defects. International Journal of Nanomedicine. 2014;9(1):485–494. Available from: https://dx.doi.org/10.2147/ijn.s52990
  24. Florea DA, Chircov C, Grumezescu AM. Hydroxyapatite Particles—Directing the Cellular Activity in Bone Regeneration Processes: An Up-To-Date Review. Applied Sciences. 2020;10(10):1–12. Available from: https://dx.doi.org/10.3390/app10103483
  25. Yi H, Rehman FU, Zhao C, Liu B, He N. Recent advances in nano scaffolds for bone repair. Bone Research. 2016;4(1):1–11. Available from: https://dx.doi.org/10.1038/boneres.2016.50
  26. Wang C, Wang Y, Meng H, Wang X, Zhu Y, Yu K, et al. Research progress regarding nanohydroxyapatite and its composite biomaterials in bone defect repair. International Journal of Polymeric Materials and Polymeric Biomaterials. 2016;65(12):601–610. Available from: https://dx.doi.org/10.1080/00914037.2016.1149849
  27. Kikuchi M. Hydroxyapatite/collagen bone-like nanocomposite. Biological and Pharmaceutical Bulletin. 2013;36(11):1666–1669. Available from: https://doi.org/10.1248/bpb.b13-00460
  28. Bystrov V, Bystrova N, Paramonova E, Sapronova A, Filippov S. Modeling and Computation of Hydroxyapatite Nanostructures and Properties. Materials Science Forum. 2006;514-516:1434–1437. Available from: https://doi.org/10.4028/www.scientific.net/MSF.514-516.1434
  29. Wang P, Zhao L, Liu J, Weir MD, Zhou X, Xu HHK. Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells. Bone Research. 2014;2(1):1–13. Available from: https://dx.doi.org/10.1038/boneres.2014.17
  30. Barros J, Ferraz MP, Azeredo J, Fernandes MH, Gomes PS, Monteiro FJ. Alginate-nanohydroxyapatite hydrogel system: Optimizing the formulation for enhanced bone regeneration. Materials Science and Engineering: C. 2019;105:1–14. Available from: https://doi.org/10.1016/j.msec.2019.109985
  31. Haider A, Gupta KC, Kang IK. Morphological Effects of HA on the Cell Compatibility of Electrospun HA/PLGA Composite Nanofiber Scaffolds. BioMed Research International. 2014;2014:1–11. Available from: https://doi.org/10.1155/2014/308306
  32. Suganya K, Murugan T, Murugan M. Isolation and characterization of probiotic lactic acid bacteria from milk and curd samples. International Journal of Pharma and Bio Sciences. 2013;4(1):317–324. Available from: https://www.ijpbs.net/abstract.php?article=MTkxOQ==
  33. Yu W, Sun TW, Qi C, Ding Z, Zhao H, Zhao S, et al. Evaluation of zinc-doped mesoporous hydroxyapatite microspheres for the construction of a novel biomimetic scaffold optimized for bone augmentation. International Journal of Nanomedicine. 2017;12:2293–2306. Available from: https://doi.org/10.2147/ijn.s126505
  34. Chen Y, Gong Y, Shan L, Tan CY, Al-Furjan RS, Chen H, et al. Research on Cartilage 3D Printing Technology Based on SA-GA-HA. Materials. 2023;16(15):1–17. Available from: https://doi.org/10.3390/ma16155312
  35. Majhooll AA, Zainol I, Jaafar CNA, Alsailawi HA, Hassan MZ, Mudhafar M, et al. A Brief Review on Biomedical Applications of Hydroxyapatite Use as Fillers in Polymer. Journal of Chemistry and Chemical Engineering. 2019;13(3):112–119. Available from: http://dx.doi.org/10.17265/1934-7375/2019.03.004
  36. Niu Y, Chen L, Wu T. Recent Advances in Bioengineering Bone Revascularization Based on Composite Materials Comprising Hydroxyapatite. International Journal of Molecular Sciences. 2023;24(15):1–23. Available from: https://doi.org/10.3390/ijms241512492
  37. Wang Y, Fan HS, Xiao YM, Gu ZW, Zhang XD. A New Way to Prepare Porous Polylactide /Hydroxyapatite Scaffold at Room Temperature. Key Engineering Materials. 2006;309-311:1083–1086. Available from: https://doi.org/10.4028/www.scientific.net/KEM.309-311.1083
  38. Yao T, Baker MB, Moroni L. Strategies to Improve Nanofibrous Scaffolds for Vascular Tissue Engineering. Nanomaterials. 2020;10(5):1–31. Available from: https://doi.org/10.3390/nano10050887
  39. Lee J, Jang J, Oh H, Jeong YH, Cho DW. Fabrication of a three-dimensional nanofibrous scaffold with lattice pores using direct-write electrospinning. Materials Letters. 2013;93:397–400. Available from: https://doi.org/10.1016/j.matlet.2012.11.124
  40. Karamian E, Khandan A, Motamedi M, Mirmohammadi H. Surface Characteristics and Bioactivity of a Novel Natural HA/Zircon Nanocomposite Coated on Dental Implants. BioMed Research International. 2014;2014:1–10. Available from: https://doi.org/10.1155/2014/410627
  41. Jung JH, Kim SY, Yi YJ, Lee BK, Kim YK. Hydroxyapatite-coated implant: Clinical prognosis assessment via a retrospective follow-up study for the average of 3 years. The Journal of Advanced Prosthodontics. 2018;10(2):85–92. Available from: https://doi.org/10.4047/jap.2018.10.2.85
  42. Ong JL, Chan DCN. A Review of Hydroxapatite and its use as a Coating in Dental Implants. Critical Reviews in Biomedical Engineering. 2017;45(1-6):411–451. Available from: https://doi.org/10.1615/critrevbiomedeng.v45.i1-6.160
  43. Schaffer AB. The combined use of hydroxylapatite segments and granules for alveolar ridge reconstruction. Journal of Oral and Maxillofacial Surgery. 1993;51(1):26–32. Available from: https://doi.org/10.1016/s0278-2391(10)80384-2
  44. Kent JN, Quinn JH, Zide MF, Guerra LR, Boyne PJ. Alveolar ridge augmentation using nonresorbable hydroxylapatite with or without autogenous cancellous bone. Journal of Oral and Maxillofacial Surgery. 1983;41(10):629–642. Available from: https://doi.org/10.1016/0278-2391(83)90016-2
  45. Maillard M, Bandiaky ON, Maunoury S, Alliot C, Alliot-Licht B, Serisier S, et al. The Effectiveness of Calcium Phosphates in the Treatment of Dentinal Hypersensitivity: A Systematic Review. Bioengineering. 2023;10(4):1–18. Available from: https://doi.org/10.3390%2Fbioengineering10040447
  46. Pei D, Meng Y, Li Y, Liu J, Lu Y. Influence of nano-hydroxyapatite containing desensitizing toothpastes on the sealing ability of dentinal tubules and bonding performance of self-etch adhesives. Journal of Mechanical Behavior of Biomedical Materials. 2019;91:38–44. Available from: https://doi.org/10.1016/j.jmbbm.2018.11.021
  47. Halim NAA, Hussein MZ, Kandar MK. Nanomaterials-Upconverted Hydroxyapatite for Bone Tissue Engineering and a Platform for Drug Delivery. International Journal of Nanomedicine. 2021;16:6477–6496. Available from: https://doi.org/10.2147/ijn.s298936
  48. Mondal S, Dorozhkin SV, Pal U. Recent progress on fabrication and drug delivery applications of nanostructured hydroxyapatite. Wiley Interdisciplinary Reviews Nanomedicine and Nanobiotechnology. 2018;10(4). Available from: https://doi.org/10.1002/wnan.1504
  49. Moore TL. Polymer-Coated Hydroxyapatite Nanoparticles for the Delivery of Statins. Journal of Nanomedicine & Nanotechnology. 2014;5(5):1–9. Available from: https://doi.org/10.4172/2157-7439.1000237
  50. Su WY, Chen YC, Lin FH. A New Type of Biphasic Calcium Phosphate Cement as a Gentamicin Carrier for Osteomyelitis. Evidence-based Complementary and Alternative Medicine. 2013;2013:1–9. Available from: https://doi.org/10.1155/2013/801374
  51. Pham XN, Nguyen HT, Pham NT. Green Synthesis and Antibacterial Activity of HAp@Ag Nanocomposite Using Centella asiatica (L.) Urban Extract and Eggshell. International Journal of Biomaterials. 2020;2020:1–12. Available from: https://dx.doi.org/10.1155/2020/8841221
  52. Capo JT, Kokko KP, Rizzo M, Adams JE, Shamian B, Abernathie B, et al. The Use of Skin Substitutes in the Treatment of the Hand and Upper Extremity. Hand (N Y). 2014;9(2):156–165. Available from: https://doi.org/10.1007/s11552-013-9587-5
  53. Zhang K, Zhou Y, Xiao C, Zhao W, Wu H, Tang J, et al. Application of hydroxyapatite nanoparticles in tumor-associated bone segmental defect. Science Advances. 2019;5(8):1–16. Available from: https://doi.org/10.1126/sciadv.aax6946
  54. Jiang J, Thyagarajan-Sahu A, Krchňák V, Jedinak A, Sandusky GE, Sliva D. NAHA, a Novel Hydroxamic Acid-Derivative, Inhibits Growth and Angiogenesis of Breast Cancer In Vitro and In Vivo. PLoS ONE. 2012;7(3):1–10. Available from: https://doi.org/10.1371/journal.pone.0034283
  55. Han Y, Li S, Cao X, Yuan L, Wang Y, Yin Y, et al. Different Inhibitory Effect and Mechanism of Hydroxyapatite Nanoparticles on Normal Cells and Cancer Cells In Vitro and In Vivo. Scientific Reports. 2014;4(1):1–8. Available from: https://doi.org/10.1038/srep07134
  56. Srinivasan M, Rajabi M, Mousa S. Multifunctional Nanomaterials and Their Applications in Drug Delivery and Cancer Therapy. Nanomaterials. 2015;5(4):1690–1703. Available from: https://doi.org/10.3390/nano5041690
  57. Babayevska N, Woźniak-Budych M, Litowczenko J, Peplińska B, Jarek M, Florczak P, et al. Novel nanosystems to enhance biological activity of hydroxyapatite against dental caries. Materials Science and Engineering: C. 2021;124:1–15. Available from: https://doi.org/10.1016/j.msec.2021.112062
  58. Clementi EA, Marks LR, Duffey ME, Hakansson AP. A Novel Initiation Mechanism of Death in Streptococcus pneumoniae Induced by the Human Milk Protein-Lipid Complex HAMLET and Activated during Physiological Death. Journal of Biological Chemistry. 2012;287(32):27168–27182. Available from: https://doi.org/10.1074/jbc.m112.371070
  59. Pawinska M, Paszynska E, Limeback H, Amaechi BT, Fabritius HO, Ganss B, et al. Hydroxyapatite as an active ingredient in oral care: an international symposium report. Bioinspired Biomimetic and Nanobiomaterials. 2024;13(1):1–14. Available from: https://doi.org/10.1680/jbibn.23.00034
  60. Juven BJ, Pierson MD. Antibacterial Effects of Hydrogen Peroxide and Methods for Its Detection and Quantitation. Journal of Food Protection. 1996;59(11):1233–1241. Available from: https://doi.org/10.4315/0362-028x-59.11.1233
  61. Wu VM, Huynh E, Tang S, Uskoković V. Calcium phosphate nanoparticles as intrinsic inorganic antimicrobials: mechanism of action. Biomedical Materials. 2021;16(1). Available from: https://doi.org/10.1088/1748-605X/aba281
  62. Alipoor R, Ayan M, Hamblin MR, Ranjbar R, Rashki S. Hyaluronic Acid-Based Nanomaterials as a New Approach to the Treatment and Prevention of Bacterial Infections. Frontiers in Bioengineering and Biotechnology. 2022;10:1–8. Available from: https://doi.org/10.3389/fbioe.2022.913912
  63. Fan D, Liu X, Ren Y, Bai S, Li Y, Luo Z, et al. Functional insights to the development of bioactive material for combating bacterial infections. Frontiers in Bioengineering and Biotechnology. 2023;11:1–21. Available from: https://doi.org/10.3389/fbioe.2023.1186637
  64. Harun WSW, Asri RIM, Sulong AB, Ghani SAC, Ghazalli Z. Hydroxyapatite-Based Coating on Biomedical Implant. In: Thirumalai J., ed. Hydroxyapatite - Advances in Composite Nanomaterials, Biomedical Applications and Its Technological Facets. IntechOpen. 2018.
  65. Channasanon S, Udomkusonsri P, Chantaweroad S, Tesavibul P, Tanodekaew S. Gentamicin Released from Porous Scaffolds Fabricated by Stereolithography. Journal of Healthcare Engineering. 2017;2017:1–8. Available from: https://dx.doi.org/10.1155/2017/9547896
  66. Graça MFP, Miguel SP, Cabral CSD, Correia IJ. Hyaluronic acid-Based wound dressings: A review. Carbohydrate Polymers. 2020;241. Available from: https://doi.org/10.1016/j.carbpol.2020.116364
  67. Herrera A, Mateo J, Gil-Albarova J, Lobo-Escolar A, Ibarz E, Gabarre S, et al. Cementless Hydroxyapatite Coated Hip Prostheses. BioMed Research International. 2015;2015:1–13. Available from: https://dx.doi.org/10.1155/2015/386461
  68. Santos C, Turiel S, Gomes PS, Costa E, Santos-Silva A, Quadros P, et al. Vascular biosafety of commercial hydroxyapatite particles: discrepancy between blood compatibility assays and endothelial cell behavior. Journal of Nanobiotechnology. 2018;16(1):1–15. Available from: https://dx.doi.org/10.1186/s12951-018-0357-y
  69. Cai Z, Wang X, Zhang Z, Han Y, Luo J, Huang M, et al. Large-scale and fast synthesis of nano-hydroxyapatite powder by a microwave-hydrothermal method. RSC Advances. 2019;9(24):13623–13630. Available from: https://dx.doi.org/10.1039/c9ra00091g
  70. Motskin M, Wright DM, Muller K, Kyle N, Gard TG, Porter AE, et al. Hydroxyapatite nano and microparticles: Correlation of particle properties with cytotoxicity and biostability. Biomaterials. 2009;30(19):3307–3317. Available from: https://dx.doi.org/10.1016/j.biomaterials.2009.02.044
  71. Chevalier J, Gremillard L. Ceramics for medical applications: A picture for the next 20 years. Journal of the European Ceramic Society. 2009;29(7):1245–1255. Available from: https://dx.doi.org/10.1016/j.jeurceramsoc.2008.08.025
  72. Patrício TMF, Panseri S, Sandri M, Tampieri A, Sprio S. New bioactive bone-like microspheres with intrinsic magnetic properties obtained by bio-inspired mineralisation process. Materials Science and Engineering: C. 2017;77:613–623. Available from: https://dx.doi.org/10.1016/j.msec.2017.03.258

Copyright

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Sri Devaraj Urs Academy of Higher Education, Kolar, Karnataka

DON'T MISS OUT!

Subscribe now for latest articles and news.