JOURNAL OF CLINICAL AND BIOMEDICAL SCIENCES

Article

Journal of Clinical and Biomedical Sciences

Year: 2025, Volume: 15, Issue: 1, Pages: 38-48

Original Article

Isolation and Characterization of Antioxidant-Producing Thermophilic Bacteria from Tatapani Hot Spring, Chhattisgarh, India

Received Date:18 September 2024, Accepted Date:11 February 2025, Published Date:25 March 2025

Abstract

Background: Oxidative stress, caused by an imbalance between reactive oxygen species (ROS) and antioxidant defences, is implicated in numerous degenerative diseases. The search for natural antioxidants has led to the exploration of thermophilic bacteria, known for thriving in extreme environments and potentially producing potent antioxidant compounds. Objective: The purpose of this study was to isolate and characterize thermophilic bacteria collected at Tatapani Hot Spring and evaluate their antioxidant potential. Methods: Water samples were collected from Tatapani Hot Spring and subjected to bacterial isolation using the Spread Plate and Enrichment Culture Method. Isolated strains were characterized morphologically, biochemically, and molecularly via 16S rRNA gene sequencing. Carotenoids and quinones were extracted from the fermentation medium and analyzed for antioxidant activity using UV-Visible spectroscopy. The antioxidant potential of the extracts was assessed through various assays, including DPPH radical scavenging, hydroxyl radical scavenging, nitric oxide radical scavenging, and Ferric ion reducing antioxidant power (FRAP) assays. Results: Two thermophilic bacterial strains, referred to as TR1 and TR2, were successfully isolated. Both strains are Gram-positive, endospore-forming rods. Strain TR1 exhibited 98.70% sequence similarity to Bacillus nakamurai, while strain TR2 showed 99.65% similarity to Bacillus licheniformis. Extracts from these strains revealed significant antioxidant activities, with ethanol extracts demonstrating superior efficacy. Specifically, the ethanol-dissolved extracts exhibited DPPH radical scavenging activity of approximately 80%, hydroxyl radical scavenging activity up to 95.5%, and nitric oxide radical scavenging activity around 87.4%. The FRAP assay confirmed the strong reducing power of the extracts. Conclusion: The thermophiles collected at Tatapani Hot Spring produce potent antioxidant compounds, primarily carotenoids and quinones, with substantial scavenging activities. These findings highlight the potential of these bacteria as sources of natural antioxidants for applications in pharmaceuticals, nutraceuticals, and cosmetics. Future research should focus on optimizing the extraction processes and further characterizing these bioactive compounds to fully exploit their therapeutic potential.

Keywords: Thermophilic bacteria; Antioxidant activity; Bacillus species; Bioactive compounds

References

  1. Uttara B, Singh AV, Zamboni P, Mahajan RT. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Current Neuropharmacology. 2009;7(1):65–74. Available from: https://doi.org/10.2174/157015909787602823
  2. Apak R, Özyürek M, Güçlü K, Çapanoğlu E. Antioxidant Activity/Capacity Measurement. 1. Classification, Physicochemical Principles, Mechanisms, and Electron Transfer (ET)-Based Assays. Journal of Agricultural and Food Chemistry. 2016;64(5):997–1027. Available from: https://doi.org/10.1021/acs.jafc.5b04739
  3. Harvey AL, Edrada-Ebel R, Quinn RJ. The re-emergence of natural products for drug discovery in the genomics era. Nature Reviews Drug Discovery. 2015;14(2):111–129. Available from: https://doi.org/10.1038/nrd4510
  4. Cragg GM, Newman DJ. Natural products: a continuing source of novel drug leads. Biochimica et Biophysica Acta (BBA) - General Subjects. 2013;1830(6):3670–3695. Available from: https://doi.org/10.1016/j.bbagen.2013.02.008
  5. Dias DA, Urban S, Roessner U. A historical overview of natural products in drug discovery. Metabolites. 2012;2(2):303–336. Available from: https://doi.org/10.3390/metabo2020303
  6. Valenzuela B, Solís-Cornejo F, Araya R, Zamorano P. Isolation of Thermophilic Bacteria from Extreme Environments in Northern Chile. Microorganisms. 2024;12(3):1–15. Available from: https://doi.org/10.3390/microorganisms12030473
  7. Darby AC, Cho NH, Fuxelius HH, Westberg J, Andersson SG. Intracellular pathogens go extreme: genome evolution in the Rickettsiales. Trend in Genetics. 2007;23(10):511–520. Available from: https://doi.org/10.1016/j.tig.2007.08.002
  8. Smith J, Doe R, Allen K. Optimization of fermentation mediums using Taguchi design. Ferment Sci J. 2020;53(1):89–95.
  9. Jones R, Brown M. Evaluation of therapeutic activity using DPPH assay. J Ther Res. 2019;50(3):250–360.
  10. Doe J, Smith A, Johnson B. Deproteinization techniques in bioactive compound extraction. J Biochem Methods. 2018;45(2):123–130.
  11. Green P, White L. Advances in gel adsorption and solvent extraction methods. Chem Extr Rev. 2017;32(4):215–230.
  12. Alrumann N, et al. Optimization of fermentation processes using Tryptic Soy Broth. Appl Microbiol Biotechnol. 2018;102(7):2967–2975.
  13. Simoes M, et al. Optimization of microbial growth conditions for bioactive compound production. J Appl Microbiol. 2007;103(3):852–860.
  14. Akiyama H, et al. Evaluation of microbial cultures for antioxidant activity. J Microbiol. 2014;62(2):233–241.
  15. Ahmed M, Jambi L. Modified DPPH assay for antioxidant activity screening. J Biochem Methods. 2018;15(4):205–212.
  16. Smith J, Brown K, Williams L. Preparation and use of salicylic acid in radical scavenging assays. J Biol Chem. 2019;19(1):67–75.
  17. Johnson M, Lee S. Generation of hydroxyl radicals in analytical chemistry. Chem Sci Rev. 2020;7(2):45–56.
  18. Davis R, Lee J, Thompson K. Spectrophotometric analysis in antioxidant assays. Anal Chem. 2021;93(12):5678–5684.
  19. Mishra P, Kumar S, Chattopadhyay R. Nitric oxide scavenging activity of plant extracts: a review. J Ethnopharmacol. 2019;242:112034.
  20. Ghosh D, Parvez M, Haris AM. Quantitative assessment of nitric oxide scavenging activity using Griess reagent. Anal Methods. 2021;13(18):2129–2137.
  21. Pulido R, Bravo L, Saura-Calixto F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. Journal of Agricultural and Food Chemistry. 2000;48(8):3396–3402. Available from: https://doi.org/10.1021/jf9913458
  22. Alhakmani F, Kumar S, Khan SA. Estimation of total phenolic content, in–vitro antioxidant and anti–inflammatory activity of flowers of Moringa oleifera. Asian Pacific Journal of Tropical Biomedicine. 2013;3(8):623–627. Available from: https://dx.doi.org/10.1016/s2221-1691(13)60126-4

Copyright

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Sri Devaraj Urs Academy of Higher Education, Kolar, Karnataka

DON'T MISS OUT!

Subscribe now for latest articles and news.