JOURNAL OF CLINICAL AND BIOMEDICAL SCIENCES

Article

Journal of Clinical and Biomedical Sciences

Year: 2025, Volume: 15, Issue: 4, Pages: 257-267

Original Article

Developing a Multiepitope Vaccine Against Helicobacter pylori using the CTLA-4 Extracellular Domain

Received Date:05 March 2025, Accepted Date:30 May 2025, Published Date:21 December 2025

Abstract

Helicobacter pylori is a pathogen that has been consistently linked to gastrointestinal cancer, particularly gastric cancer. Reports indicate that this pathogen is resistant to antibiotic treatments, necessitating the development of new treatment strategies. Here, to design a vaccine against H. pylori immunoinformatic tools were used. For this purpose, five virulence proteins including Flagellin B (FlaB), Flagellin A (FlaA), Urease subunit beta (UreB), CagA and Vacuolating cytotoxin autotransporter (VacA) were selected. Antigenicity and allergenicity were evaluated, and the epitopes with the highest scores were chosen. Linkers were used to connect the epitopes and an extracellular domain of CTLA-4 was positioned on the N-terminal. Biochemical features were predicted with the ProtParam server, and the second structure was predicted with the Prabi server, while the third structure was predicted with the Robetta, Alphafold and I-TASSER servers. VaxiJen and AllerTOP servers were used to evaluate the vaccine's antigenicity and allergenicity, respectively. After confirming the structure of the designed vaccine, molecular docking was performed with the TLR5 molecule using AutoDock Vina software. The SnapGene tool was utilized to in silico cloning of the vaccine in pET-3a vector. To evaluate the efficacy of the recombinant vaccine, the multi-epitope gene of H. pylori was cloned into the pCDNA3.1 vector, and its expression was analyzed in the spleen tissue of BALB/c mice using RT-qPCR. It has been shown in the results that the vaccine designed can bind to the TLR5 molecule on the surface of immune cells. Despite being an antigen, this vaccine didn't have any allergenic properties. Immunoinformatic is a promising tool for designing various drugs and vaccines. The results demonstrated that the expression levels of TNF-α and IFN-γ were significantly increased in the vaccine-treated group compared to the control group (P < 0.05). The elevated expression of pro-inflammatory cytokines indicates that the designed DNA vaccine successfully induced a cellular immune response against H. pylori.

Keywords: H. pylori; Vaccine design; CTLA-4; Immunoinformatic; Gastric cancer

References

1. Warren JR, Marshall B. Unidentified curved bacilli on gastric epithelium in active chronic gastritis. The Lancet. 1983; 321 (8336). Available from: https://doi.org/10.1016/s0140-6736(83)92719-8

2. Sit WY, Chen YA, Chen YL, Lai CH, Wang WC. Cellular evasion strategies of Helicobacter pylori in regulating its intracellular fate. Seminars in Cell & Developmental Biology. 2020; 101 Available from: https://doi.org/10.1016/j.semcdb.2020.01.007

3. Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, et alChronic inflammation in the etiology of disease across the life span. Nature Medicine. 2019; 25 (12). Available from: https://doi.org/10.1038/s41591-019-0675-0

4. Ražuka‐Ebela, D, Giupponi B, Franceschi F. Helicobacter pylori and extragastric diseases. Helicobacter. 2018; 23 (S1). Available from: https://doi.org/10.1111/hel.12520

5. Torok AM, Bouton AH, Goldberg JB. Helicobacter pyloriInduces Interleukin-8 Secretion by Toll-Like Receptor 2- and Toll-Like Receptor 5-Dependent and -Independent Pathways. Infection and Immunity. 2005; 73 (3). Available from: https://doi.org/10.1128/iai.73.3.1523-1531.2005

6. Junaid M, Shah M, Khan A, Li CD, Khan MT, Kaushik AC, et alStructural-dynamic insights into the H. pylori cytotoxin-associated gene A (CagA) and its abrogation to interact with the tumor suppressor protein ASPP2 using decoy peptides. Journal of Biomolecular Structure and Dynamics. 2019; 37 (15). Available from: https://doi.org/10.1080/07391102.2018.1537895

7. Marques AT, Vítor JMB, Santos A, Oleastro M, Vale FF. Trends in Helicobacter pylori resistance to clarithromycin: from phenotypic to genomic approaches. Microbial Genomics. 2020; 6 (3). Available from: https://doi.org/10.1099/mgen.0.000344

8. Suzuki S, Esaki M, Kusano C, Ikehara H, Gotoda T. Development of Helicobacter pylori treatment: How do we manage antimicrobial resistance?. World Journal of Gastroenterology. 2019; 25 (16). Available from: https://doi.org/10.3748/wjg.v25.i16.1907

9. Ghosh P, Bhakta S, Bhattacharya M, Sharma AR, Sharma G, Lee SS et alA Novel Multi-Epitopic Peptide Vaccine Candidate Against Helicobacter pylori: In-Silico Identification, Design, Cloning and Validation Through Molecular Dynamics. International Journal of Peptide Research and Therapeutics. 2021; 27 (2). Available from: https://doi.org/10.1007/s10989-020-10157-w

10. Chen J, Lin L, Li N, She F. Enhancement of Helicobacter pylori outer inflammatory protein DNA vaccine efficacy by co‐delivery of interleukin‐2 and B subunit heat‐labile toxin gene encoded plasmids. Microbiology and Immunology. 2012; 56 (2). Available from: https://doi.org/10.1111/j.1348-0421.2011.00409.x

11. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD et alProtein Identification and Analysis Tools on the ExPASy Server. The Proteomics Protocols Handbook. 2005; Available from: https://doi.org/10.1385/1-59259-890-0:571

12. Geourjon C, Deleage G. SOPM: a self-optimized method for protein secondary structure prediction. "Protein Engineering, Design and Selection". 1994; 7 (2). Available from: https://doi.org/10.1093/protein/7.2.157

13. Razavi A, Bagheri N, Azadegan-Dehkordi F, Shirzad M, Rahimian G, Rafieian-Kopaei M, et alComparative Immune Response in Children and Adults withH. pyloriInfection. Journal of Immunology Research. 2015; 2015 Available from: https://doi.org/10.1155/2015/315957

14. Moyat M, Velin D. Immune responses toHelicobacter pyloriinfection. World Journal of Gastroenterology. 2014; 20 (19). Available from: https://doi.org/10.3748/wjg.v20.i19.5583

15. Menheniott TR, Judd LM, Giraud AS. STAT3: a critical component in the response toHelicobacter pyloriinfection. Cellular Microbiology. 2015; 17 (11). Available from: https://doi.org/10.1111/cmi.12518

16. Jafarzadeh A, Larussa T, Nemati M, Jalapour S. T cell subsets play an important role in the determination of the clinical outcome of Helicobacter pylori infection. Microbial Pathogenesis. 2018; 116 Available from: https://doi.org/10.1016/j.micpath.2018.01.040

17. Algood HMS, Cover TL. Helicobacter pyloriPersistence: an Overview of Interactions betweenH. pyloriand Host Immune Defenses. Clinical Microbiology Reviews. 2006; 19 (4). Available from: https://doi.org/10.1128/cmr.00006-06

18. Larussa T, Leone I, Suraci E, Imeneo M, Luzza F. Helicobacter pyloriand T Helper Cells: Mechanisms of Immune Escape and Tolerance. Journal of Immunology Research. 2015; 2015 Available from: https://doi.org/10.1155/2015/981328

19. Mohammadi M, Nedrud J, Redline R, Lycke N, Czinn SJ. Murine CD4 T-cell response to Helicobacter infection: TH1 cells enhance gastritis and TH2 cells reduce bacterial load. Gastroenterology. 1997; 113 (6). Available from: https://doi.org/10.1016/s0016-5085(97)70004-0

20. Schmitz J, Thiel A, Kühn R, Rajewsky K, Müller W, Assenmacher M, et alInduction of interleukin 4 (IL-4) expression in T helper (Th) cells is not dependent on IL-4 from non-Th cells.. The Journal of experimental medicine. 1994; 179 (4). Available from: https://doi.org/10.1084/jem.179.4.1349

21. Rivera-Hernandez T, Rhyme MS, Cork AJ, Jones S, Segui-Perez C, Brunner L, et alVaccine-Induced Th1-Type Response Protects against Invasive Group A Streptococcus Infection in the Absence of Opsonizing Antibodies. mBio. 2020; 11 (2). Available from: https://doi.org/10.1128/mbio.00122-20

22. Gu H. Role of Flagella in the Pathogenesis of Helicobacter pylori. Current Microbiology. 2017; 74 (7). Available from: https://doi.org/10.1007/s00284-017-1256-4

23. Clyne M, Ocroinin T, Suerbaum S, Josenhans C, Drumm B, et alAdherence of Isogenic Flagellum-Negative Mutants of Helicobacter pylori and Helicobacter mustelae to Human and Ferret Gastric Epithelial Cells. Infection and Immunity. 2000; 68 (7). Available from: https://doi.org/10.1128/iai.68.7.4335-4339.2000

24. Yan J, Liang SH, MaoYF, Li LW, Li P. Construction of expression systems forflaAandflaBgenes ofHelicobacter pyloriand determination of immunoreactivity and antigenicity of recombinant proteins. World Journal of Gastroenterology. 2003; 9 (10). Available from: https://doi.org/10.3748/wjg.v9.i10.2240

25. Blanchard TG, Czinn SJ. Identification of Helicobacter pylori and the evolution of an efficacious childhood vaccine to protect against gastritis and peptic ulcer disease. Pediatric Research. 2017; 81 (1-2). Available from: https://doi.org/10.1038/pr.2016.199

26. Pan X, Ke H, Niu X, Li S, Lv J, Pan L. Protection Against Helicobacter pylori Infection in BALB/c Mouse Model by Oral Administration of Multivalent Epitope-Based Vaccine of Cholera Toxin B Subunit-HUUC. Frontiers in Immunology. 2018; 9 Available from: https://doi.org/10.3389/fimmu.2018.01003

27. Moyat M, Velin D. Use of VacA as a Vaccine Antigen. Toxins. 2016; 8 (6). Available from: https://doi.org/10.3390/toxins8060181

28. Huang JQ, Zheng GF, Sumanac K, Irvine EJ, Hunt RH. Meta-analysis of the relationship between cagA seropositivity and gastric cancer. Gastroenterology. 2003; 125 (6). Available from: https://doi.org/10.1053/j.gastro.2003.08.033

29. Parsonnet J, Friedman GD, Orentreich N, Vogelman H. Risk for gastric cancer in people with CagA positive or CagA negative Helicobacter pylori infection.. Gut. 1997; 40 (3). Available from: https://doi.org/10.1136/gut.40.3.297

30. Yamaoka Y. Mechanisms of disease: Helicobacter pylori virulence factors. Nature Reviews Gastroenterology & Hepatology. 2010; 7 (11). Available from: https://doi.org/10.1038/nrgastro.2010.154

31. van Hooren L, Sandin LC, Moskalev I, Ellmark P, Dimberg A, Black P, et alLocal checkpoint inhibition of CTLA‐4 as a monotherapy or in combination with anti‐PD1 prevents the growth of murine bladder cancer. European Journal of Immunology. 2017; 47 (2). Available from: https://doi.org/10.1002/eji.201646583

32. Boyle JS, Brady JL, Lew AM. Enhanced responses to a DNA vaccine encoding a fusion antigen that is directed to sites of immune induction. Nature. 1998; 392 (6674). Available from: https://doi.org/10.1038/32932

33. O'neill LAJ, Golenbock D, Bowie AG. The history of Toll-like receptors — redefining innate immunity. Nature Reviews Immunology. 2013; 13 (6). Available from: https://doi.org/10.1038/nri3446

34. Ishihara S, Rumi MAK, Kadowaki Y, Ortega-Cava CF, Yuki T, Yoshino N, et alEssential Role of MD-2 in TLR4-Dependent Signaling during Helicobacter pylori-Associated Gastritis. The Journal of Immunology. 2004; 173 (2). Available from: https://doi.org/10.4049/jimmunol.173.2.1406

35. Ru Z, Yu M, Zhu Y, Chen Z, Zhang F, Zhang Z, et alImmmunoinformatics‐based design of a multi‐epitope vaccine with CTLA‐4 extracellular domain to combat Helicobacter pylori. The FASEB Journal. 2022; 36 (4). Available from: https://doi.org/10.1096/fj.202101538rr

Copyright

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Sri Devaraj Urs Academy of Higher Education, Kolar, Karnataka

DON'T MISS OUT!

Subscribe now for latest articles and news.