JOURNAL OF CLINICAL AND BIOMEDICAL SCIENCES

Article

Journal of Clinical and Biomedical Sciences

Year: 2025, Volume: 15, Issue: 2, Pages: 69-77

Original Article

Grape Pomace as a Reliable Source of Phenolic Compounds: Polyphenol Composition and Biological Properties

Received Date:29 July 2024, Accepted Date:17 March 2025, Published Date:10 July 2025

Abstract

Grape pomace, the residue from winemaking, has emerged as a promising source of phenolic compounds with diverse biological activities. This review explores the polyphenol composition of grape pomace and its potential health benefits. Grape pomace contains a variety of polyphenols, including flavonoids (such as anthocyanins, flavonols, and flavan-3-ols) and non-flavonoids (such as phenolic acids and stilbenes), which contribute to its antioxidant, anti-inflammatory, antimicrobial, cardioprotective, and anticancer properties. The extraction methods and analytical techniques used to quantify these polyphenols are discussed, highlighting the variability in polyphenol content based on grape variety, winemaking process, and extraction methods. Applications of grape pomace polyphenols in functional foods, nutraceuticals, cosmetics, and pharmaceuticals are reviewed, emphasizing their potential as sustainable ingredients. Moreover, the review addresses the challenges and prospects for utilizing grape pomace as a valuable source of bioactive compounds, promoting both environmental sustainability and economic viability in the wine industry.

Keywords: Phenolic compounds, Flavonoids, Polyphenols, Bioactive compounds

References

  1. Georgiev V, Ananga A, Tsolova V. Recent Advances and Uses of Grape Flavonoids as Nutraceuticals. Nutrients. 2014;6(1):391–415. Available from: https://dx.doi.org/10.3390/nu6010391
  2. Garrido MD, Auqui M, Martí N, Linares MB. Effect of two different red grape pomace extracts obtained under different extraction systems on meat quality of pork burgers. LWT - Food Science and Technology. 2011;44(10):2238–2243. Available from: https://dx.doi.org/10.1016/j.lwt.2011.07.003
  3. Boussetta N, Lanoisellé JL, Bedel-Cloutour C, Vorobiev E. Extraction of soluble matter from grape pomace by high voltage electrical discharges for polyphenol recovery: Effect of sulphur dioxide and thermal treatments. Journal of Food Engineering. 2009;95(1):192–198. Available from: https://dx.doi.org/10.1016/j.jfoodeng.2009.04.030
  4. Panouillé M, Ralet MC, Bonnin E, Thibault JF. Recovery and reuse of trimmings and pulps from fruit and vegetable processing. In: Handbook of Waste Management and Co-Product Recovery in Food Processing. (Vol. 1, pp. 417-447) Waldron, K.W., Ed; Cambridge, UK. Woodhead Publishing Limited. 2007.
  5. Yu J, Ahmedna M. Functional components of grape pomace: their composition, biological properties and potential applications. International Journal of Food Science & Technology. 2013;48(2):221–237. Available from: https://doi.org/10.1111/j.1365-2621.2012.03197.x
  6. Beres C, Costa GNS, Cabezudo I, Silva-James NKd, Teles ASC, Cruz APG, et al. Towards integral utilization of grape pomace from winemaking process: A review. Waste Management. 2017;68:581–594. Available from: https://dx.doi.org/10.1016/j.wasman.2017.07.017
  7. Antoni´c B, Janˇcíková S, Dordevi´c D, Tremlová B. Grape Pomace Valorization: A Systematic Review and Meta-Analysis. Foods. 2020;9(11):1–20. Available from: https://doi.org/10.3390/foods9111627
  8. Orak HH, Aktas T, Yagar H, İsbilir SS, Ekinci N, Sahin FH. Effects of hot air and freeze drying methods on antioxidant activity, colour and some nutritional characteristics of strawberry tree (<i>Arbutus unedo</i> L) fruit. Food Science and Technology International. 2012;18(4):391–402. Available from: https://dx.doi.org/10.1177/1082013211428213
  9. Pinelo M, Arnous A, Meyer AS. Upgrading of grape skins: Significance of plant cell-wall structural components and extraction techniques for phenol release. Trends in Food Science & Technology. 2006;17(11):579–590. Available from: https://dx.doi.org/10.1016/j.tifs.2006.05.003
  10. Ferreira V, Lopez R, Cacho JF. Quantitative determination of the odorants of young red wines from different grape varieties. Journal of the Science of Food and Agriculture. 2000;80(11):1659–1667. Available from: https://dx.doi.org/10.1002/1097-0010(20000901)80:11<1659::aid-jsfa693>3.0.co;2-6
  11. Ferri M, Bin S, Vallini V, Fava F, Michelini E, Roda A, et al. Recovery of polyphenols from red grape pomace and assessment of their antioxidant and anti-cholesterol activities. New Biotechnology. 2016;33(3):338–344. Available from: https://dx.doi.org/10.1016/j.nbt.2015.12.004
  12. Shi J, Yu J, Pohorly JE, Kakuda Y. Polyphenolics in Grape Seeds—Biochemistry and Functionality. Journal of Medicinal Food. 2003;6(4):291–299. Available from: https://dx.doi.org/10.1089/109662003772519831
  13. Baydar NG, Akkurt M. Oil content and oil quality properties of some grape seeds. Turkish Journal of Agriculture and Forestry. 2001;25(3):163–168. Available from: https://www.researchgate.net/publication/280744040_Oil_content_and_oil_quality_properties_of_some_grape_seeds
  14. Dani C, Oliboni LS, Vanderlinde R, Bonatto D, Salvador M, Henriques JAP. Phenolic content and antioxidant activities of white and purple juices manufactured with organically- or conventionally-produced grapes. Food and Chemical Toxicology. 2007;45(12):2574–2580. Available from: https://dx.doi.org/10.1016/j.fct.2007.06.022
  15. Kammerer D, Claus A, Carle R, Schieber A. Polyphenol Screening of Pomace from Red and White Grape Varieties (<i>Vitis vinifera</i>L.) by HPLC-DAD-MS/MS. Journal of Agricultural and Food Chemistry. 2004;52(14):4360–4367. Available from: https://dx.doi.org/10.1021/jf049613b
  16. Carmona MJ, Chaib J, Martinez-Zapater JM, Thomas MR. A molecular genetic perspective of reproductive development in grapevine. Journal of Experimental Botany. 2008;59(10):2579–2596. Available from: https://dx.doi.org/10.1093/jxb/ern160
  17. Kobayashi H, Takase H, Suzuki Y, Tanzawa F, Takata R, Fujita K, et al. Environmental stress enhances biosynthesis of flavor precursors, S-3-(hexan-1-ol)-glutathione and S-3-(hexan-1-ol)-L-cysteine, in grapevine through glutathione S-transferase activation. Journal of Experimental Botany. 2011;62(3):1325–1336. Available from: https://doi.org/10.1093/jxb/erq376
  18. Coombe BG. Control of flowering, fruit set and development in grapes. In: LEW., ed. Proceedings of the 7th International Symposium on Grapevine Physiology and Biotechnology. (pp. 1-10) Davis: American Society for Enology and Viticulture. 2001.
  19. Nawaz H, Shi J, Mittal GS, Kakuda Y. Extraction of polyphenols from grape seeds and concentration by ultrafiltration. Separation and Purification Technology. 2006;48(2):176–181. Available from: https://doi.org/10.1016/j.seppur.2005.07.006
  20. Porto CD, Natolino A, Decorti D. Comparison of the chemical composition and physicochemical properties of different by-products of winemaking. Journal of Agricultural and Food Chemistry. 2012;60(36):9055–9062.
  21. Zengin G, Sarikurkcu C, Gevrenova R, Uysal S. Cytotoxic, antioxidant, and antibacterial activities of the methanol extract of Artemisia absinthium L. Industrial Crops and Products. 2018;118:173–179.
  22. Jiménez-Sánchez C, Lozano-Sánchez J, Segura-Carretero A, Fernández-Gutiérrez A. Alternatives and trends in the extraction of bioactive compounds from marine byproducts: Opportunities for the valorization of sea cucumbers. Marine Drugs. 2016;14(6):118.
  23. Li Y, Fabiano-Tixier AS, Tomao V, Cravotto G, Chemat F. Green ultrasound-assisted extraction of carotenoids based on the bio-refinery concept using sunflower oil as an alternative solvent. Ultrasonics Sonochemistry. 2013;20(1):12–18. Available from: https://dx.doi.org/10.1016/j.ultsonch.2012.07.005
  24. Cáceres PJ, Han J, Salmieri S. Study of the effect of enzyme-assisted extraction on the phenolic content and antioxidant properties of cranberry pomace. Journal of Food Science and Technology. 2018;55(7):2621–2630.
  25. Beres C, Costa GNS, Cabezudo I, Silva-James NKd, Teles ASC, Cruz APG, et al. Towards integral utilization of grape pomace from winemaking process: A review. Waste Management. 2017;68:581–594. Available from: https://dx.doi.org/10.1016/j.wasman.2017.07.017
  26. Singleton VL, Rossi JA. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture. 1965;16(3):144–158. Available from: https://dx.doi.org/10.5344/ajev.1965.16.3.144
  27. Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology. 1995;28(1):25–30. Available from: https://dx.doi.org/10.1016/s0023-6438(95)80008-5
  28. Benzie IFF, Strain JJ. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Analytical Biochemistry. 1996;239(1):70–76. Available from: https://dx.doi.org/10.1006/abio.1996.0292
  29. Dugo P, Presti ML, Ohman M, Fazio A, Dugo G, Mondello L, et al. Determination of fatty acids in berry seed oils by gas chromatography and chemometric resolution. Journal of Agricultural and Food Chemistry. 2001;49(9):4509–4514.
  30. Gornall AG, Bardawill CJ, David MM. Determination of serum proteins by means of the biuret reaction. Journal of Biological Chemistry. 1949;177(2):751–766. Available from: https://dx.doi.org/10.1016/s0021-9258(18)57021-6
  31. Bordonaba JG, Terry LA. Analysis of major and trace elements in plant materials by plasma spectrometry A review. Analytica Chimica Acta. 2011;704(1-2):22–38.
  32. Buchanan RL, Whiting RC, Damert WC, Magnuson JA. When to use ELISA, when to use other immunoassay formats. Food Technology. 1974;28(8):40–45.
  33. Yu J, Ahmedna M. Functional components of grape pomace: their composition, biological properties and potential applications. International Journal of Food Science & Technology. 2013;48(2):221–237. Available from: https://dx.doi.org/10.1111/j.1365-2621.2012.03197.x
  34. González-Centeno MR, Rosselló C, Simal S, Garau MC, López F, Femenia A. Physico-chemical properties of cell wall materials obtained from ten grape varieties and their byproducts: grape pomaces and stems. LWT - Food Science and Technology. 2010;43(10):1580–1586. Available from: https://dx.doi.org/10.1016/j.lwt.2010.06.024
  35. García‐Lomillo J, González‐SanJosé ML. Applications of Wine Pomace in the Food Industry: Approaches and Functions. Comprehensive Reviews in Food Science and Food Safety. 2017;16(1):3–22. Available from: https://dx.doi.org/10.1111/1541-4337.12238
  36. Xia EQ, Deng GF, Guo YJ, Li HB. Biological Activities of Polyphenols from Grapes. International Journal of Molecular Sciences. 2010;11(2):622–646. Available from: https://dx.doi.org/10.3390/ijms11020622
  37. Castro-Marín F, Celaya P, Hoz LDL, Guerrero RF, García-Parrilla MC, Puertas B. Antioxidant, anti-inflammatory, and cardioprotective properties of grape pomace extract in a rat model of metabolic syndrome. Journal of Functional Foods. 2018;41:301–309.
  38. Monagas M, Hernández-Ledesma B, Gómez-Cordovés C, Bartolomé B. Commercial Dietary Ingredients from<i>Vitis vinifera</i>L. Leaves and Grape Skins:  Antioxidant and Chemical Characterization. Journal of Agricultural and Food Chemistry. 2006;54(2):319–327. Available from: https://dx.doi.org/10.1021/jf051807j
  39. Alcaide EM, Ruiz DY, Moumen A, Garcı́a IM. Chemical composition and nitrogen availability for goats and sheep of some olive by-products. Small Ruminant Research. 2003;49(3):329–336. Available from: https://dx.doi.org/10.1016/s0921-4488(03)00148-2
  40. Bustamante MA, Moral R, Paredes C, Pérez-Espinosa A, Moreno-Caselles J, Pérez-Murcia MD. Agrochemical characterisation of the solid by-products and residues from the winery and distillery industry. Waste Management. 2008;28(2):372–380. Available from: https://dx.doi.org/10.1016/j.wasman.2007.01.013
  41. Mussatto SI, Dragone G, Guimarães PMR, Silva JPA, Carneiro LM, Roberto IC, et al. Technological trends, global market, and challenges of bio-ethanol production. Biotechnology Advances. 2010;28(6):817–830. Available from: https://doi.org/10.1016/j.biotechadv.2010.07.001
  42. Xu Y, Burton S, Kim C, Sismour E. Phenolic compounds, antioxidant, and antibacterial properties of pomace extracts from four Virginia‐grown grape varieties. Food Science & Nutrition. 2016;4(1):125–133. Available from: https://dx.doi.org/10.1002/fsn3.264
  43. Vuolo MM, Lima VS, Junior MR. Phenolic compounds: structure, classification, and antioxidant power. Bioactive Compounds: Health Benefits and Potential Applications. 2019;p. 33–50. Available from: https://doi.org/10.1016/B978-0-12-814774-0.00002-5
  44. Makris DP, Boskou G, Andrikopoulos NK. Polyphenolic content and in vitro antioxidant characteristics of wine industry and other agri-food solid waste extracts. Journal of Food Composition and Analysis. 2007;20(2):125–132. Available from: https://dx.doi.org/10.1016/j.jfca.2006.04.010
  45. Shrikhande AJ. Wine by-products with health benefits. Food Research International. 2000;33(6):469–474. Available from: https://dx.doi.org/10.1016/s0963-9969(00)00071-5
  46. Dwyer K, Hosseinian F, Rod M. The Market Potential of Grape Waste Alternatives. Journal of Food Research. 2014;3(2):91–106. Available from: https://dx.doi.org/10.5539/jfr.v3n2p91

Copyright

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Sri Devaraj Urs Academy of Higher Education, Kolar, Karnataka

DON'T MISS OUT!

Subscribe now for latest articles and news.