JOURNAL OF CLINICAL AND BIOMEDICAL SCIENCES

Article

Journal of Clinical and Biomedical Sciences

Year: 2025, Volume: 15, Issue: 2, Pages: 95-103

Original Article

PATIENT-CARE: A ML Based Real-Time Decision Support System for Public Health, Integrating Epidemiological Modeling and Blockchain Technology

Received Date:12 November 2024, Accepted Date:11 January 2025, Published Date:11 July 2025

Abstract

Background: Nowadays, public health structure is very much disrupted with intensive communicable diseases like dengue, malaria or covid-19 and non-communicable disease like cancer. Identifying proper segment of population susceptible to disease gives us an overall idea of the disease outbreak and helps in taking some precautionary measure form the governance point of view of the regulatory authority. Accordingly, there is always a substantial impact of different socio-demographic features in public health specifically for communicable diseases. Materials & Method: A Decision Support System (DSS) can help us tracking and monitoring, in real-time, the variation of segmented population in a certain geographic dimension about who are already infected or susceptible to infection. And further studying and analyzing and predicting different socio-demographic parameters creates certain impact in the pandemic scenario. On top of that applying machine learning technique helps us to plan or impose awareness rules and regulations. Epidemiological Model are effective in predicting population infection ratio, considering some parameters as constant. Furthermore, data privacy and security is always a major concern while dealing with sensitive data in Decision Support System. Not only that a decision support system should be able to accept data from diversified sources and can able to store that in decentralized manner adopting multiple stakeholders with different roles and responsibilities. We have proposed a DSS comprises of epidemiological model, machine learning technique, blockchain technology and anonymization technique. This novel Decision Support System will not only act as an alarming mechanism on varying population, geographic dimension and demographic factors but also will show the overall impact of those factors in any pandemic scenario keeping decentralization and security measure intact. Conclusion: The study effectively validates the effectiveness of the proposed model and substantiate that it surpasses different existing competitors’ method as well.

Keywords: Epidemiological model, Feedback-based SIR Model, Public Health, Blockchain, Anonymization

References

  1. Suvarnamani A, Pongsumpun P. Analyze of the Model for Cancer Transmission. 3rd International Conference on Image Processing and Machine Vision (IPMV). 2021;p. 77–81. Available from: https://doi.org/10.1145/3469951.3469965
  2. Rodrigues HS. Application of SIR epidemiological model: new trends. International Journal of Applied Mathematics and Informatics. 2016;10:92–97. Available from: https://doi.org/10.48550/arXiv.1611.02565
  3. Marusic M. Mathematical models of tumor growth. Mathematical Communications. 1996;1(2):175–192. Available from: https://www.researchgate.net/publication/228395122_Mathematical_models_of_tumor_growth
  4. Heymann DL, Rodier GR. Global surveillance of communicable diseases. Emerging infectious diseases. 1998;4(3):362–365. Available from: https://doi.org/10.3201/eid0403.980305
  5. Priyadharshini P, Zoraida BSE. Feedback Based Adaptive Recurrent Neural Network for Cancer Detection using Gene Data Pattern. International Journal of Engineering and Advanced Technology. 2019;9(2):2999–3006. Available from: https://www.ijeat.org/wp-content/uploads/papers/v9i2/B4074129219.pdf
  6. Yana Y, Zhaoa K, Cao J, Ma H. Prediction research of cervical cancer clinical events based on recurrent neural network. Procedia Computer Science. 2021;183(4):221–229. Available from: https://doi.org/10.1016/j.procs.2021.02.052
  7. Jawad S, Winter M, Rahman ZASA, Al-Yasir YIA, Zeb A. Dynamical Behavior of a Cancer Growth Model with Chemotherapy and Boosting of the Immune System. Mathematics. 2023;11(2):1–16. Available from: https://dx.doi.org/10.3390/math11020406
  8. Appice A, Gel YR, Iliev I, Lyubchich V, Malerba D. A Multi-Stage Machine Learning Approach to Predict Dengue Incidence: A Case Study in Mexico. IEEE Access. 2020;8:52713–52725. Available from: https://dx.doi.org/10.1109/access.2020.2980634
  9. Rahimi I, Gandomi AH, Asteris PG, Chen F. Analysis and Prediction of COVID-19 Using SIR, SEIQR, and Machine Learning Models: Australia, Italy, and UK Cases. Information. 2021;12(3):1–23. Available from: https://doi.org/10.3390/info12030109
  10. Imrana M, Wua M, Zhaob Y, Bes¸ec E, Khand MJ. Mathematical Modelling of SIR for COVID-19 Forecasting. Revista Argentina de Cl´ınica Psicolo´gica 2021. 2021;XXX(1):218–226. Available from: https://doi.org/ 10.24205/03276716.2020.2018
  11. Hovorushchenko T, Hnatchuk Y, Osyadlyi V, Kapustian M, Boyarchuk A. Blockchain-Based Medical Decision Support System. Journal of Cyber Security and Mobility. 2023;12(3):253–274. Available from: https://dx.doi.org/10.13052/jcsm2245-1439.123.1
  12. Dubovitskaya A, Baig F, Xu Z, Shukla R, Zambani PS, Swaminathan A, et al. ACTION-EHR: Patient-Centric Blockchain-Based Electronic Health Record Data Management for Cancer Care. Journal of Medical Internet Research. 2020;22(8):e13598. Available from: https://doi.org/10.2196/13598
  13. Liu X, Chen H, Xia W. Overview of Named Entity Recognition. Journal of Contemporary Educational Research. 2022;6(5):65–68. Available from: https://dx.doi.org/10.26689/jcer.v6i5.3958
  14. Raj A, D’Souza R. Anonymization of sensitive data in unstructured documents using NLP. International Journal of Mechanical Engineering and Technology (IJMET). 2021;12(4):25–35. Available from: https://doi.org/10.34218/IJMET.12.4.2021.002
  15. Lothritz C, Allix K, Veiber L, Bissyandé TF, Klein J. Evaluating Pretrained Transformer-based Models on the Task of Fine-Grained Named Entity Recognition. In: Proceedings of the 28th International Conference on Computational Linguistics. (pp. 3750-3760) International Committee on Computational Linguistics. 2020.
  16. In H, Bilimoria KY, Stewart AK, Wroblewski KE, MCP, Talamonti MS, et al. Cancer Recurrence: An Important but Missing Variable in National Cancer Registries. Annals of Surgical Oncology . 2014;21:1520–1529. Available from: https://doi.org/10.1245/s10434-014-3516-x
  17. Esmatabadi MJD, Bakhshinejad B, Motlagh FM, Babashah S, Sadeghizadeh M. Therapeutic resistance and cancer recurrence mechanisms: Unfolding the story of tumour coming back. Journal of Biosciences. 2016;41(3):497–506. Available from: https://dx.doi.org/10.1007/s12038-016-9624-y
  18. Patni JC, Sharma HK, Sharma S, Choudhury T, Mor A, Ahmed ME, et al. COVID-19 Pandemic Diagnosis and Analysis Using Clinical Decision Support Systems. In: Cyber Intelligence and Information Retrieval, Lecture Notes in Networks and Systems . (Vol. 291, pp. 267-277) Springer Singapore. 2021.
  19. Atek S, Bianchini F, Vito CD, Cardinale V, Novelli S, Pesaresi C, et al. A predictive decision support system for coronavirus disease 2019 response management and medical logistic planning. Digital Health. 2023;9:1–20. Available from: https://dx.doi.org/10.1177/20552076231185475
  20. Varotsos CA, Krapivin VF, Xue Y, Soldatov V, Voronova T. COVID-19 pandemic decision support system for a population defense strategy and vaccination effectiveness. Safety Science. 2021;142:1–7. Available from: https://doi.org/10.1016/j.ssci.2021.105370
  21. Han Y, Zhang Y, Vermund SH. Blockchain Technology for Electronic Health Records. International Journal of Environmental Research and Public Health. 2022;19(23):1–6. Available from: https://dx.doi.org/10.3390/ijerph192315577

Copyright

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Sri Devaraj Urs Academy of Higher Education, Kolar, Karnataka

DON'T MISS OUT!

Subscribe now for latest articles and news.