JOURNAL OF CLINICAL AND BIOMEDICAL SCIENCES

Article

Journal of Clinical and Biomedical Sciences

Year: 2025, Volume: 15, Issue: 2, Pages: 118-125

Original Article

Advanced Arrhythmia Classification Using Transformer-Based CNN

Received Date:17 October 2024, Accepted Date:12 December 2024, Published Date:11 July 2025

Abstract

Background: The Electrocardiogram (ECG) is a vital clinical signal for recognizing cardiovascular ailments (CVDs) such as Arrhythmia. However, manual assessment of ECG signals is challenging due to subtle physiological variations in both regular and irregular cases, mainly when dealing with a large volume of cardiac patients. From this perspective, automated sorting of ECG signals can offer substantial relief to healthcare experts, facilitating precise analysis. Objective: This study aims to develop an automated system for sorting ECG signals to ease the workload of healthcare experts and enhance the precision of cardiac condition analysis. The ultimate goal is to provide healthcare professionals with a reliable tool that streamlines the interpretation process, enabling timely and accurate diagnoses, thereby improving patient outcomes and reducing healthcare burdens. Method & Material: Current approaches predominantly rely on convolutional neural networks (CNNs) to extract ECG signal features. However, these may fail to capture nuanced differences in pathological features across different diseases. Transformer networks, known for their prowess in handling sequence data, offer advantages in feature extraction but often rely on extensive datasets, making the complete network intricate. This proposed model utilizes CNN and Transformers for arrhythmia classification. This study was conducted on the MIT-BIH Arrhythmia database (MIT-ArrhyDB), classifying five distinct classes of arrhythmias based on their morphological features. Result: The proposed model exhibits an impressive F1 Score of 98.52% and classification accuracy of 98.95%. Conclusion: Comparative analysis with standard CNN exposes the superior performance of our proposed model. This highlights its outstanding overall performance and potential utility in clinical applications.

Keywords: Electrocardiogram (ECG), Arrhythmia, Convolutional Neural Network (CNN), Transformer

References

  1. Gao J, Zhang H, Lu P, Wang Z. An Effective LSTM Recurrent Network to Detect Arrhythmia on Imbalanced ECG Dataset. Journal of Healthcare Engineering. 2019;2019:1–10. Available from: https://doi.org/10.1155/2019/6320651
  2. Dong Y, Zhang M, Qiu L, Wang L, Yu Y. An Arrhythmia Classification Model Based on Vision Transformer with Deformable Attention. Micromachines. 2023;14(6):1–12. Available from: https://dx.doi.org/10.3390/mi14061155
  3. Sattar S, Mumtaz R, Qadir M, Mumtaz S, Khan MA, Waele TD, et al. Cardiac Arrhythmia Classification Using Advanced Deep Learning Techniques on Digitized ECG Datasets. Sensors. 2024;24(8):1–23. Available from: https://dx.doi.org/10.3390/s24082484
  4. Ansari Y, Mourad O, Qaraqe K, Serpedin E. Deep learning for ECG Arrhythmia detection and classification: an overview of progress for period 2017–2023. Frontiers in Physiology. 2023;14:1–20. Available from: https://doi.org/10.3389/fphys.2023.1246746
  5. McSharry PE, Clifford GD, Tarassenko L, Smith LA. A dynamical model for generating synthetic electrocardiogram signals. IEEE Transactions on Biomedical Engineering. 2003;50(3):289–294. Available from: https://dx.doi.org/10.1109/tbme.2003.808805
  6. Wu M, Lu Y, Yang W, Wong SY. A Study on Arrhythmia via ECG Signal Classification Using the Convolutional Neural Network. Frontiers in Computational Neuroscience. 2021;14:1–10. Available from: https://dx.doi.org/10.3389/fncom.2020.564015
  7. Hua X, Han J, Zhao C, Tang H, He Z, Chen Q, et al. A novel method for ECG signal classification via one-dimensional convolutional neural network. Multimedia Systems. 2022;28(4):1387–1399. Available from: https://doi.org/10.1007/s00530-020-00713-1
  8. Maweu BM, Dakshit S, Shamsuddin R, Prabhakaran B. CEFEs: A CNN Explainable Framework for ECG Signals. Artificial Intelligence in Medicine. 2021;115:102059. Available from: https://dx.doi.org/10.1016/j.artmed.2021.102059
  9. Zhao Y, Cheng J, Zhan P, Peng X. ECG Classification Using Deep CNN Improved by Wavelet Transform. Computers, Materials & Continua. 2020;64(3):1615–1628. Available from: https://dx.doi.org/10.32604/cmc.2020.09938
  10. Golany T, Lavee G, Yarden ST, Radinsky K. Improving ECG Classification Using Generative Adversarial Networks. Proceedings of the AAAI Conference on Artificial Intelligence. 2020;34(08):13280–13285. Available from: https://dx.doi.org/10.1609/aaai.v34i08.7037
  11. Chatfield K, Simonyan K, Vedaldi A, Zisserman A. Return of the Devil in the Details: Delving Deep into Convolutional Nets. Proceedings of the British Machine Vision Conference 2014. 2014;p. 1–11. Available from: https://doi.org/10.48550/arXiv.1405.3531
  12. Mark R, Moody G. MIT-BIH Arrhythmia Database Directory. Cambridge, MA, USA. Massachusetts Institute of Technology. 1988.
  13. Acharya UR, Suri JS, JAES, Krishnan SM. Advances in Cardiac Signal Processing (1). (p. XXII, 468 pages) Berlin, Heidelberg. Springer. 2007.
  14. Chandrakar B, Yadav OP, Chandra VK. A survey of noise removal techniques for ECG signals. International Journal of Advanced Research in Computer and Communication Engineering. 2013;2(3):1354–1357. Available from: https://www.researchgate.net/publication/303155606_A_survey_of_noise_removal_techniques_for_ecg_signals
  15. Chen B, Li Y, Cao X, Sun W, He W. Removal of Power Line Interference From ECG Signals Using Adaptive Notch Filters of Sharp Resolution. IEEE Access. 2019;7:150667–150676. Available from: https://dx.doi.org/10.1109/access.2019.2944027
  16. Wang T, Lu C, Sun Y, Yang M, Liu C, Ou C. Automatic ECG Classification Using Continuous Wavelet Transform and Convolutional Neural Network. Entropy. 2021;23(1):1–13. Available from: https://dx.doi.org/10.3390/e23010119
  17. Li J, Si Y, Xu T, Jiang S. Deep Convolutional Neural Network Based ECG Classification System Using Information Fusion and One-Hot Encoding Techniques. Mathematical Problems in Engineering. 2018;2018:1–10. Available from: https://dx.doi.org/10.1155/2018/7354081
  18. Hu S, Cai W, Gao T, Wang M. A Hybrid Transformer Model for Obstructive Sleep Apnea Detection Based on Self-Attention Mechanism Using Single-Lead ECG. IEEE Transactions on Instrumentation and Measurement. 2022;71:1–11. Available from: https://dx.doi.org/10.1109/tim.2022.3193169
  19. Sun Z, Wang C, Zhao Y, Yan C. Multi-Label ECG Signal Classification Based on Ensemble Classifier. IEEE Access. 2020;8:117986–117996. Available from: https://doi.org/10.1109/ACCESS.2020.3004908
  20. Chen A, Wang F, Liu W, Chang S, Wang H, He J, et al. Multi-information fusion neural networks for arrhythmia automatic detection. Computer Methods and Programs in Biomedicine. 2020;193:105479. Available from: https://dx.doi.org/10.1016/j.cmpb.2020.105479
  21. Guo L, Sim G, Matuszewski B. Inter-patient ECG classification with convolutional and recurrent neural networks. Biocybernetics and Biomedical Engineering. 2019;39(3):868–879. Available from: https://doi.org/10.1016/j.bbe.2019.06.001
  22. Yıldırım Ö, Pławiak P, Tan RS, Acharya UR. Arrhythmia detection using deep convolutional neural network with long duration ECG signals. Computers in Biology and Medicine. 2018;102:411–420. Available from: https://dx.doi.org/10.1016/j.compbiomed.2018.09.009

Copyright

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Sri Devaraj Urs Academy of Higher Education, Kolar, Karnataka

DON'T MISS OUT!

Subscribe now for latest articles and news.